Foundations of Chemistry

, Volume 16, Issue 3, pp 215–233 | Cite as

Similarity and representation in chemical knowledge practices

  • Juan Bautista Bengoetxea
  • Oliver Todt
  • José Luis Luján
Article

Abstract

This paper argues for the theoretical and practical validity of similarity as a useful epistemological tool in scientific knowledge generation, specifically in chemistry. Classical analyses of similarity in philosophy of science do not account for the concept’s practical significance in scientific activities. We recur to examples from chemistry to counter the claim of authors like Quine or Goodman to the effect that similarity must be excluded from scientific practices (as well as their philosophical analysis). In conclusion we argue that more recent conceptualizations of the notion of similarity, particularly Giere’s one, are appropriate for a philosophical analysis that considers scientific practices on equal terms with scientific theory.

Keywords

Chemistry Similarity Representation Model Scientific practices Regulatory science 

References

  1. Balzer, W., Moulines, C.U., Sneed, J.: An Architectonic for Science: The Structuralist Program. Reidel, Dordrecht (1987)CrossRefGoogle Scholar
  2. Brown, T.L., LeMay, H.E., Bursten, B.E., Murphy, C.J., Woodward, P.M.: Chemistry: The Central Science, 12th edn. Prentice Hall, New Jersey (2012)Google Scholar
  3. Bueno, O.: Empirical adequacy: a partial structures approach. Stud. History Philos. Sci. 28, 585–610 (1997)CrossRefGoogle Scholar
  4. Carnap, R.: The Logical Structure of the World: Pseudoproblems in Philosophy, p. 1967. University of California Press, Berkeley (1928)Google Scholar
  5. Cartwright, N.: How the Laws of Physics Lie. Clarendon Press, Oxford (1983)CrossRefGoogle Scholar
  6. Contessa, G.: Scientific representation, interpretation and surrogative reasoning. Philos. Sci. 74, 48–68 (2007)CrossRefGoogle Scholar
  7. Corey, E.J., Chelg, X.-M.: The Logic of Chemical Synthesis. John Miley & Sons, New York (1995)Google Scholar
  8. Cronin, M., Walker, J.D., Jaworska, J.S., Comber, M., Watts, C.D., Worth, A.P.: Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ. Health Perspect. 111, 1376–1390 (2003)CrossRefGoogle Scholar
  9. da Costa, N.C.A., French, S.: Science and Partial Truth. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  10. Decock, L., Douven, I.: Similarity after Goodman. Revue Philos. Psychol. 2, 61–75 (2011)CrossRefGoogle Scholar
  11. Gärdenfors, P.: Conceptual Revolutions: The Geometry of Thought. The MIT Press, Cambridge, Mass. (2000)Google Scholar
  12. Giere, R.N.: Explaining Science: A Cognitive Approach. University of Chicago Press, Chicago (1988)CrossRefGoogle Scholar
  13. Giere, R.N.: How models are used to represent reality. Philos. Sci. 71, 742–752 (2004)CrossRefGoogle Scholar
  14. Giere, R.N.: Scientific Perspectivism. The University of Chicago Press, Chicago (2006)CrossRefGoogle Scholar
  15. Giere, R.N.: An agent-based conception of models and scientific representation. Synthese 172, 269–281 (2010)CrossRefGoogle Scholar
  16. Godfrey-Smith, P.: The strategy of model-based science. Biol. Philos. 21, 725–740 (2006)CrossRefGoogle Scholar
  17. Goodman, N.: The Structure of Appearance, 3rd edn, p. 1977. Reidel, Dordrecht (1951)Google Scholar
  18. Goodman, N.: Languages of Art: An Approach to a Theory of Symbols. The Bobbs-Merrill Company, Indianapolis (1968)Google Scholar
  19. Goodman, N.: Problems and projects. The Bobbs-Merrill Company, Indianapolis (1972)Google Scholar
  20. Groutas, W.C.: Organic Reaction Mechanisms: Selected Problems and Solutions. Wiley, Hoboken, NJ (1999)Google Scholar
  21. Gute, B.D., Basak, S.C., Mills, D., Hawkins, D.M.: Tailored similarity spaces for the prediction of physicochemical properties. Intern. Electron. J. Mol. Design 1(8), 374–387 (2002)Google Scholar
  22. Hanson, J.R.: Functional Group Chemistry. Royal Society of Chemistry, Cambridge, UK (2001)Google Scholar
  23. Hirsch, E.: Dividing Reality. Oxford University Press, Oxford (1993)Google Scholar
  24. Hughes, R.I.G.: Models and representation. Philos. Sci. 64(Proceedings), S325–S336 (1997)Google Scholar
  25. Jasanoff, S.: The Fifth Branch: Science Advisers as Policy Makers. Harvard University Press, Cambridge, Mass. (1990)Google Scholar
  26. Klein, U.: Techniques of modelling and paper-tools in classical chemistry. In: Morgan, M.S., Morrison, M. (eds.) Models as Mediators: Perspectives on Natural and Social Science, pp. 146–167. Cambridge University Press, Cambridge, Mass. (1999)CrossRefGoogle Scholar
  27. Kubinyi, H.: Similarity and Dissimilarity-a Medicinal Chemists View. Perspect. Drug Discov. Des. 11, 225–252 (1998)CrossRefGoogle Scholar
  28. Kuriki, T., Imanaka, T.: The concept of the a-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87, 557–565 (1999)CrossRefGoogle Scholar
  29. Leitgeb, H.: A new analysis of quasianalysis. J. Philos. Logic 36(2), 181–226 (2007)CrossRefGoogle Scholar
  30. Lloyd, E.A.: A semantic approach to the structure of population genetics. Philos. Sci. 51, 242–264 (1984)CrossRefGoogle Scholar
  31. Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45, 4350–4358 (2002)CrossRefGoogle Scholar
  32. Medin, D.L.: Concepts and conceptual structure. Am. Psychol. 44, 1469–1481 (1989)CrossRefGoogle Scholar
  33. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for similarity. Psychol. Rev. 100, 254–278 (1993)CrossRefGoogle Scholar
  34. Miller, J.H., Page, S.E.: Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton (2007)Google Scholar
  35. Monev, V.: Introduction to similarity searching in chemistry. Match Commun. Math. Comput. Chem. 51, 7–38 (2004)Google Scholar
  36. Mormann, T.: New work for carnap’s quasi-analysis. J. Philos. Logic 38, 249–282 (2009)CrossRefGoogle Scholar
  37. Mundy, B.: On the general theory of meaningful representation. Synthese 67, 391–437 (1986)CrossRefGoogle Scholar
  38. Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity-a review’. QSAR Comb. Sci. 22, 1006–1026 (2003)CrossRefGoogle Scholar
  39. O’Boyle, N.M., Holliday, G.L., Almonacid, D.E., Mitchell, J.B.: Using reaction mechanism to measure enzyme similarity. J. Mol. Biol. 368, 1484–1499 (2007)CrossRefGoogle Scholar
  40. Quine, W.V.O.: Ontological Relativity and Other Essays. Columbia University Press, New York (1969)Google Scholar
  41. Restrepo, G., Pachón, L.: Mathematical aspects of the periodic law. Found. Chem. 9, 189–214 (2007)CrossRefGoogle Scholar
  42. Restrepo, G., Llanos, E.J., Mesa, H.: Topological space of the chemical elements and properties. J. Math. Chem. 39, 401–416 (2006)CrossRefGoogle Scholar
  43. Rouse, J.: How Scientific Practices Matter: Reclaiming Philosophical Naturalism. The University of Chicago Press, Chicago (2002)Google Scholar
  44. Rouvray, D.H.: Definition and role of similarity concepts in the chemical and physical sciences. J. Chem. Inf. Comput. Sci. 32, 580–586 (1992)CrossRefGoogle Scholar
  45. Rouvray, D.H. (ed.): Fuzzy logic in chemistry. Academia Press, San Diego, CA (1997)Google Scholar
  46. Russell, B.: Mysticism and Logic and Other Essays. George Allen & Unwin Ltd, London (1918)Google Scholar
  47. Russell, B.: Vagueness. In: Keefe, R., Smith, P. (eds.) Vagueness: A Reader, pp. 61–68. The MIT Press, Cambridge, Mass. (1923)Google Scholar
  48. Scerri, E.C.: Collected Papers on Philosophy of Chemistry. Imperial College Press, London (2008)CrossRefGoogle Scholar
  49. Schaafsma, G., Kroese, E.D., Tielemenas, E.L.J.P., Van de Sandt, J.J.M., Van Leeuwen, C.J.: REACH, non-testing approaches and the urgent need for a change in mind set. Regul. Toxicol. Pharmacol. 53, 70–80 (2009)CrossRefGoogle Scholar
  50. Schreider, Ju.A.: Equality, Resemblance and Order. Mir Publishers, Moscow (1975)Google Scholar
  51. Schummer, J.: The chemical core of chemistry I: a conceptual approach. HYLE-Int. J. Philos. Chem. 4(2), 129–162 (1998)Google Scholar
  52. Siggia, S., Hanna, J.G.: Quantitative Organic Analysis via Functional Groups. Wiley, New York (1979)Google Scholar
  53. Sneed, J.: The Logical Structure of Mathematical Physics. Reidel, Dordrecht (1971)CrossRefGoogle Scholar
  54. Stegmüller, W.: The Structuralist View of Theories: A Possible Analogue of the Bourbaki Programme in Physical Science. Springer, Berlin (1979)Google Scholar
  55. Suárez, M.: An inferential conception of scientific representation. Philos. Sci. 71, 767–779 (2004)CrossRefGoogle Scholar
  56. Suárez, M.: Scientific representation. Philos. Compass 5(1), 91–101 (2010)CrossRefGoogle Scholar
  57. Suppe, F.: The Semantic Conception of Theories and Scientific Realism. University of Illinois Press, Chicago (1989)Google Scholar
  58. Suppes, P.: A comparison of the meaning and use of models in mathematics and the empirical sciences. Synthese 12, 287–300 (1960)CrossRefGoogle Scholar
  59. Swoyer, C.: Structural representation and surrogative reasoning. Synthese 87, 449–508 (1991)CrossRefGoogle Scholar
  60. Toon, A.: The ontology of theoretical modelling: models as make-believe. Synthese 172, 301–315 (2010)CrossRefGoogle Scholar
  61. Toon, A.: Similarity and scientific representation. Int. Stud. Philos. Sci. 26, 241–257 (2012)CrossRefGoogle Scholar
  62. Van Fraassen, B.: The Scientific Image. Oxford University Pres, Oxford (1980)CrossRefGoogle Scholar
  63. Vemulapalli, G.K.: Nature of chemical substances: Microscopic and macroscopic views. In: Ruthenberg, K., van Brakel, J. (eds.) Stuff: The Nature of Chemical Substances, pp. 123–142. Königshausen & Neumann, Würzburg (2008)Google Scholar
  64. Vidya, G.: Basics of Drug Analysis. Pharmamed Press, Hyderabad (2009)Google Scholar
  65. Vihalemm, R.: Natural kinds, explanation, and essentialism in chemistry. In: Earley Sr, J.E. (ed.) Chemical Explanation: Characteristics, Development, Autonomy, pp. 59–70. Annals of the New York Academy of Sciences, New York (2003)Google Scholar
  66. Walker, J.: QSARs for pollution prevention: Toxicity screening, risk assessment and web applications. SETAC Press, Brussels (2003)Google Scholar
  67. Weisberg, M.: Simulation and Similarity: Using Models to Understand the World. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  68. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Juan Bautista Bengoetxea
    • 1
  • Oliver Todt
    • 1
  • José Luis Luján
    • 1
  1. 1.University of the Balearic IslandsPalmaSpain

Personalised recommendations