Foundations of Chemistry

, Volume 16, Issue 2, pp 125–147 | Cite as

Environmental Sustainability: implications and limitations to Green Chemistry

  • Carlos Alberto Marques
  • Adélio A. S. C. Machado


This study discusses the relationship between Green Chemistry and Environmental Sustainability as expressed in textbooks and articles on Green Chemistry authored by their promoters. It was found that although the Brundtland concept of Sustainable Development/Sustainability has been mentioned often by green chemists, a full analysis of that relationship was almost never attempted. In particular, green chemists have paid scarce attention to the importance of The Second Law of thermodynamics on Environmental Sustainability and the consequences of the limitations it imposes on Green Chemistry, which are discussed in this paper.


Green Chemistry Sustainable Development Environmental Sustainability Eco-thermodynamics 



To CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil), as well as CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil) and FCT (Fundação de Ciência e Tecnologia, Portugal), for the award of a collaboration project on “Chemical Education under the Perspective of Green Chemistry and Environmental Sustainability”, project nr 289/11 (Brasil) and 151/11 (Portugal).


  1. Ahluwalia, V.R.: Green Chemistry—Environmentally Benign Reactions. CRC Taylor & Francis Group, Boca Raton (2008)Google Scholar
  2. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, Oxford (1998)Google Scholar
  3. Anastas, P.T., Williamson, T.C. (eds.): Green Chemistry—Frontiers in Benign Chemistry Syntheses. Oxford UP, Oxford (1998)Google Scholar
  4. Anastas, P.T., Williamson, T.C., Hjeresen, D., Breen, J.J.: Promoting Green Chemistry initiatives. Env. Sc. Technol. 33, 116A–119A (1999)CrossRefGoogle Scholar
  5. Anastas, P.T., Bartlett, L.B., Kirchhoff, M.M., Williamson, T.C.: The role of catalysis in the design, development, and implementation of Green Chemistry. Cat. Today 55, 11–22 (2000)CrossRefGoogle Scholar
  6. Anastas, P.T., Kirchhoff, M.M., Williamson, T.C.: Catalysis as a foundational pillar of Green Chemistry. Appl. Catal. A 221, 3–13 (2001)CrossRefGoogle Scholar
  7. Anastas, P.T., Kirchhoff, M.M.: Origins, current status, and future challenges of Green Chemistry. Acc. Chem. Res. 35, 686–694 (2002)CrossRefGoogle Scholar
  8. Anastas, P.: Meeting the challenges to sustainability thorough Green Chemistry. Green Chem. 5, G29–G34 (2003)CrossRefGoogle Scholar
  9. Anastas, P., Beach, E.S.: Green Chemistry: the emergence of a transformative framework. Green Chem. Lett. Rev. 1, 9–24 (2007)CrossRefGoogle Scholar
  10. Arons, J., van der Kooi, H.J.: Towards a metabolic society: a thermodynamic view. Green Chem. 3, G53–G55 (2001)Google Scholar
  11. Basiago, A.D.: Methods of defining “Sustainability”. Sustain. Dev. 3, 109–119 (1995)CrossRefGoogle Scholar
  12. Beach, E.S., Cui, Z., Anastas, P.: Green Chemistry: a design framework for sustainability. Energy Environ. Sci. 2, 1038–1049 (2009)CrossRefGoogle Scholar
  13. BSD (Board on Sustainable Development, US National Academy of Sciences): Our Common Journey. National Academy Press, Washington (1999)Google Scholar
  14. Centi, G., Perathoner, S.: Catalysis and sustainable (green) chemistry. Catal. Today 77, 287–297 (2003)CrossRefGoogle Scholar
  15. Clark, J.H.: Green Chemistry: challenges and opportunities. Green Chem. 1, 1–8 (1999)CrossRefGoogle Scholar
  16. Clark, J.H.: Green Chemistry: today (and tomorrow). Green Chem. 8, 17–21 (2006)CrossRefGoogle Scholar
  17. Collins, T.J.: Green Chemistry. MacMillan Encyclopedia of Chemistry, vol. 2, pp. 691–697. Macmillan Publishing, New York (1997)Google Scholar
  18. Daly, H.E.: Steady-State Economics, 2nd edn. Island Press, Washington (1991)Google Scholar
  19. Daly, H.E.: The economic thought of frederick soddy. Hist. Political Econ. 12, 469–488 (1980)CrossRefGoogle Scholar
  20. Dichiarante, V., Ravelli, D., Albini, A.: Green Chemistry: state of the art through an analysis of the literature. Green Chem. Lett. Rev. 3, 105–113 (2010)CrossRefGoogle Scholar
  21. Ehrenfeld, D.: Sustainability: living with the imperfections. Conserv. Biol. 19, 33–35 (2005)CrossRefGoogle Scholar
  22. Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge, Mass (1971)CrossRefGoogle Scholar
  23. Goldsmith, E., Allen, R., Allaby, M., John Davoll, J., Lawrence, S. (eds): A blueprint for survival. Penguin Books Ltd, Harmondsworth (1972)Google Scholar
  24. Goodland, R.: The concept of Environmental Sustainability. Annu. Rev. Ecol. Syst. 26, 1–24 (1995)CrossRefGoogle Scholar
  25. Graedel, T.E.: Green Chemistry and sustainable development. In: Clark, J.H., Macquarrie, D. (eds.) Handbook of Green Chemistry and Technology, Chapt. 4, pp. 56–61. Wiley, Chichester (2002)Google Scholar
  26. Graedel, T.E.: Green Chemistry as systems science. Pure Appl. Chem. 73, 1243–1246 (2001)CrossRefGoogle Scholar
  27. Hjeresen, D.L., Anastas, P., Ware, S., Kirchhof, M.: Green Chemistry progress & challenges. Env. Sci. Technol. 35, 114A–119A (2001)CrossRefGoogle Scholar
  28. Hull, Z.: Sustainable Development: premises, understanding and prospects. Sustain. Dev. 16, 73–80 (2008)CrossRefGoogle Scholar
  29. Huesemann, M.H.: The limits of technological solutions to sustainable development. Clean Techn. Environ. Policy 5, 8–20 (2003)Google Scholar
  30. Huesemann, M.H.: The failure of eco-efficiency to guarantee sustainability: future challenges for industrial ecology. Environ. Prog. 23, 264–270 (2004)CrossRefGoogle Scholar
  31. Jacoby, M.: Securing the supply or rare earths. Chem. Eng. News 88(35), 9–12 (2010)CrossRefGoogle Scholar
  32. Jischa, M.F.: Sustainable Development and technology assessment. Chem. Eng. Technol. 21, 628–636 (1998)CrossRefGoogle Scholar
  33. Kates, R.W., Parris, T.M., Leiserowitz, A.A.: What is sustainable development? Goals, indicators, values and practice. Environment 47(3), 8–21 (2005)CrossRefGoogle Scholar
  34. Khan, M.A.: Sustainable Development: the key concepts, issues and implications. Sustain. Dev. 3, 63–69 (1995)CrossRefGoogle Scholar
  35. Kidwai, M., Mohan, R.: Green Chemistry: an innovative technology. Found. Chem. 7, 269–287 (2005)CrossRefGoogle Scholar
  36. Kirchhoff, M.M.: Promoting sustainability through Green Chemistry. Resour. Conserv. Recycl. 44, 237–243 (2005)CrossRefGoogle Scholar
  37. Lancaster, M.: Green Chemistry—An Introductory Text. Royal Society of Chemistry, Cambridge (2002)Google Scholar
  38. Lancaster, M.: Green Chemistry—An Introductory Text, 2nd edn. Royal Society of Chemistry, Cambridge (2010)Google Scholar
  39. Lélé, S.M.: Sustainable Development: a critical review. World Dev. 19, 607–621 (1991)CrossRefGoogle Scholar
  40. Linthrost, J.A.: An overview: origins and development of Green Chemistry. Found. Chem. 12, 55–68 (2010)CrossRefGoogle Scholar
  41. Logar, N.: Chemistry, Green Chemistry, and the instrumental valuation of sustainability. Minerva 49, 113–136 (2011)CrossRefGoogle Scholar
  42. Machado, A.A.S.C.: Da génese ao ensino da Química Verde. Quim. Nova 34, 535–543 (2011)CrossRefGoogle Scholar
  43. Machado, A.A.S.C.: Green Chemistry Education: Towards a Systems Thinking Approach, Plenary Presented at the 4th International IUPAC Conference on Green Chemistry. Foz do Iguaçu, Brasil (2012)Google Scholar
  44. Manley, J.B., Anastas, P., Cue Jr, B.W.: Frontiers in Green Chemistry: meeting the grand challengers for sustainability in R&D and manufacturing. J. Clean. Prod. 16, 743–750 (2008)CrossRefGoogle Scholar
  45. Matlack, A.S.: Introduction to Green Chemistry. Marcel Dekker, New York (2001)Google Scholar
  46. Matlack, A.S.: Introduction to Green Chemistry, 2nd edn. CRC Press, Boca Raton (2010)Google Scholar
  47. Matus, K.J.M., Clark, W.C., Anastas, P.T., Zimmerman, J.B.: Barriers to the implementation of Green Chemistry in the United States. Env. Sci. Technol. 46, 10892–10899 (2012)Google Scholar
  48. Nemerow, N.L.: Zero Pollution for Industry—Waste Minimization Through Industrial Complexes. Wiley-Interscince, New York (1995)Google Scholar
  49. Newton, J.L., Freyfogle, E.T.: Sustainability: a dissent. Conserv. Biol. 19, 23–32 (2005)CrossRefGoogle Scholar
  50. Nitta, Y., Yoda, S.: Challenging the human crisis: “The trilemma”. Technol. Forecast. Soc. Chang. 49, 175–194 (1995)CrossRefGoogle Scholar
  51. Norton, B.G.: Evaluating ecosystems states: two competing paradigms. Ecol. Econ. 14, 113–127 (1995)CrossRefGoogle Scholar
  52. Paehke, R.: Environmental politics, sustainability and social science. Environ. Polit 10(4), 1–22 (2001)CrossRefGoogle Scholar
  53. Paehke, R.: Sustainability as a bridging concept. Conserv. Biol. 19, 36–38 (2005)CrossRefGoogle Scholar
  54. Pawlowski, A.: How many dimensions does sustainable development have? Sustain. Dev. 16, 81–90 (2008)CrossRefGoogle Scholar
  55. Sciubba, E., Zullo, F.: Exergy-based population dynamics. J. Ind. Ecol. 15, 172–184 (2011)CrossRefGoogle Scholar
  56. Soddy, F.: Cartesian Economics: The Bearing of Physical Science upon State Stewardship, Hendersons, London (1922). Available from: Accessed 06 November 2012
  57. Soddy, F.: Wealth, Virtual Wealth, and Debt. Allen and Unwin, London (1926)Google Scholar
  58. Soddy, F.: The Role of Money: What it Should be, Contrasted with What it has Become. Routledge, London (1934); fac-simile reprint (2003). Available from: Accessed 06 November 2012
  59. Srivastava, M.M., Sanghi, R. (eds.): Chemistry for Green Environment. Narosa Publishing House, New Delhi (2005)Google Scholar
  60. Thornton, J.: Implementing Green Chemistry: an environmental policy for sustainability. Pure Appl. Chem. 73, 1231–1236 (2001)CrossRefGoogle Scholar
  61. Thornton, J.: Beyond risk: an ecological paradigm to prevent global chemical pollution. Int. J. Occup. Environ. Health 6, 318–330 (2000)CrossRefGoogle Scholar
  62. Tiezzi, E.: Tempos Históricos, Tempos Biológicos, a Terra ou a Morte: os Problemas da Nova Ecologia. São Paulo, Nobel (1988)Google Scholar
  63. Werner, J.C., Cannon, A.S., Dye, K.K.: Green Chemistry. Environ. Impact Assess. Rev. 24, 775–799 (2004)CrossRefGoogle Scholar
  64. Winterton, N.: Sense and sustainability: the role of chemistry, green or otherwise. Clean Techn. Environ. Policy 5, 8–20 (2003)CrossRefGoogle Scholar
  65. Winterton, N.: Chemistry for Sustainable Technologies: A Foundation. RCS Publishing, Cambridge, UK (2011), Chapter 6Google Scholar
  66. Woodhouse, E.J., Breyman, S.: Green Chemistry as a social movement. Sci. Techonol. Human Values 30, 199–222 (2005)CrossRefGoogle Scholar
  67. WCED (World Commission on Environmental and Development): Our Common Future. Oxford University Press, Oxford (1987)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carlos Alberto Marques
    • 1
  • Adélio A. S. C. Machado
    • 2
  1. 1.Departamento de Metodologia de Ensino and Programa de Pós-Graduação em Educação Científica e TecnológicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de Química, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations