Foundations of Chemistry

, Volume 16, Issue 1, pp 63–75 | Cite as

What does shape a topological atom?

  • Hamidreza Joypazadeh
  • Shant ShahbazianEmail author


In this pedagogical communication after demonstrating the legitimacy for using the quantum theory of atoms in molecules (QTAIM) to non-Coulombic systems, Hookean H2 +/H3 2+ species are used for AIM analysis. In these systems, in contrast to their Coulombic counterparts, electron density is atom-like and instead of expected two/three topological atoms, just a single topological atom emerges. This observation is used to demonstrate that what is really “seen” by the topological analysis of electron densities is the clustering of electrons. The very trait of monotonic decay of electron density around the “centers” of clustering guarantees the appearance of topological atoms as basin of attraction of the gradient vector field of the electron density. Although observations with Hookean molecules may seem disappointing at first glance, a careful reasoning points to the fact that the QTAIM methodology is extendable to novel domains, by a knowledge of the morphology of underlying densities, beyond the typical Coulombic systems.


Quantum theory of atoms in molecules Topological atoms Monotonic electron density Hookean model of molecules Non-Coulombic potential energies 



Shant Shahbazian is grateful to Mr. Shahin Sowlati, Dr. Rohoullah Firouzi, Miss. Masume Gharabaghi and Dr. Cina Foroutan-Nejad for a detailed reading of a previous draft of this paper and their fruitful comments and suggestions.


  1. Anderson, J.S., Ayers, P.W., Hernandez, J.I.: How ambiguous is the local kinetic energy? J. Phys. Chem. A 114, 8884–8895 (2010)CrossRefGoogle Scholar
  2. Ayers, P.W., Parr, R.G.: Sufficient condition for monotonic electron density decay in many-electron systems. Int. J. Quantum Chem. 95, 877–881 (2003)CrossRefGoogle Scholar
  3. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)Google Scholar
  4. Bader, R.F.W.: Everyman’s derivation of the theory of atoms in molecules. J. Phys. Chem. A 111, 7966–7972 (2007)CrossRefGoogle Scholar
  5. Bader, R.F.W., Preston, H.J.T.: The kinetic energy of molecular charge distributions and molecular stability. Int. J. Quantum Chem. 3, 327–347 (1969)CrossRefGoogle Scholar
  6. Bader, R.F.W., Popelier, P.L.A.: Atomic theorems. Int. J. Quantum Chem. 45, 189–207 (1993)CrossRefGoogle Scholar
  7. Becerra, M., Posligua, V., Ludeña, E.V.: Non-Born-Oppenhiemer nuclear and electronic densities for a Hooke-coulomb model for a four-particle system. Int. J. Quantum Chem. (2013). doi: 10.1002/qua.24368 Google Scholar
  8. Cohen, L.: Local kinetic energy in quantum mechanics. J. Chem. Phys. 70, 788–789 (1979)CrossRefGoogle Scholar
  9. Coppens, P.: X-ray Charge Density and Chemical Bonding. Oxford University Press, Oxford (1997)Google Scholar
  10. Ebran, J.-P., Khan, E., Nikšić, T., Vretenar, D.: How atomic nuclei cluster. Nature 487, 341–344 (2012)CrossRefGoogle Scholar
  11. Freer, M.: The clustered nucleus-cluster structures in stable and unstable nuclei. Rep. Prog. Phys. 70, 2149–2210 (2007)CrossRefGoogle Scholar
  12. Freer, M.: Nucleons come together. Nature 487, 309–310 (2012)CrossRefGoogle Scholar
  13. Gatti, C., Macchi, P.: Modern Charge-Density Analysis. Springer, New York (2012)CrossRefGoogle Scholar
  14. Goli, M., Shahbazian, Sh.: The two-component quantum theory of atoms in molecules (TC-QTAIM): Foundations. Theor. Chem. Acc. 131, 1208-1–1208-19 (2012)CrossRefGoogle Scholar
  15. Grainer, W.: Quantum Mechanics: An Introduction. Springer, New York (2001)CrossRefGoogle Scholar
  16. Heidar Zadeh, F., Shahbazian, Sh.: The quantum divided basins: A new class of quantum subsystems. Int. J. Quantum Chem. 111, 2788–2801 (2011a)CrossRefGoogle Scholar
  17. Heidar Zadeh, F., Shahbazian, Sh.: Toward a fuzzy atom view within the context of the quantum theory of atoms in molecules: Quasi-atoms. Theor. Chem. Acc. 128, 175–181 (2011b)CrossRefGoogle Scholar
  18. Howard, I.A., Amovilli, C., Gidopoulos, N., March, N.H.: Exactly solvable model mimicking the H2 molecule in the limit of large nuclear mass. J. Math. Chem. 42, 603–615 (2006)CrossRefGoogle Scholar
  19. Karwowski, J.: A separable model of N interaction particles. Int. J. Quantum Chem. 108, 2253–2260 (2008)CrossRefGoogle Scholar
  20. Karwowski, J., Szewe, K.: Separable N-particle Hookean models. J. Phys: Conf. Ser. 213, 012016-1–012016-13 (2010)Google Scholar
  21. Lopez, X., Ugalde, J.M., Ludeña, E.V.: Extracular densities of the non-Born-Oppenhiemer Hookean H2 molecule. Chem. Phys. Lett. 412, 381–385 (2005)CrossRefGoogle Scholar
  22. Lopez, X., Ugalde, J.M., Echevarria, L., Ludeña, E.V.: Exact non-Born-Oppenheimer wave functions for three–particle Hookean systems with arbitrary masses. Phys. Rev. A 74, 042504-1–042504-13 (2006a)CrossRefGoogle Scholar
  23. Lopez, X., Ugalde, J.M., Ludeña, E.V.: Exact non-Born-Oppenheimer wave function for the Hooke-Calogero model for the H2 molecule. Eur. Phys. J. D 37, 351–359 (2006b)CrossRefGoogle Scholar
  24. Ludeña, E.V., Lopez, X., Ugalde, J.M.: Non-Born-Oppenhiemer treatment of the H2 Hookean molecule. J. Chem. Phys. 123, 024102-1–024102-11 (2005)CrossRefGoogle Scholar
  25. Ludeña, E.V., Echevarria, L., Lopez, X., Ugalde, J.M.: Non-Born-Oppenhiemer electronic and nuclear densities for Hooke-Calogero three-particle model: Non-uniqueness of density-derived molecular structure. J. Chem. Phys. 136, 084103-1–084103-12 (2012)CrossRefGoogle Scholar
  26. Mátyus, E., Hutter, J., Müller-Herold, U., Reiher, M.: On the emergence of molecular structure. Phys. Rev. A 83, 052512 (2011)CrossRefGoogle Scholar
  27. Müller-Herold, U.: On the emergence of molecular structure from atomic shape in the 1/r2 harmonium model. J. Chem. Phys. 124, 014105-1–014105-5 (2006)CrossRefGoogle Scholar
  28. Müller-Herold, U.: On the transition between directed bonding and helium-like angular correlation in a modified Hooke-Calogero model. Eur. Phys. J. D 49, 311–315 (2008)CrossRefGoogle Scholar
  29. Müller-Herold, U.: On shape variation of confined triatomics of XY2-type. Eur. Phys. J. D 56, 311–315 (2010)CrossRefGoogle Scholar
  30. Nasertayoob, P., Shahbazian, Sh.: Revisiting the foundations of the quantum theory of atoms in molecules (QTAIM): The variational procedure and the zero-flux conditions. Int. J. Quantum Chem. 108, 1477–1484 (2008)CrossRefGoogle Scholar
  31. Nasertayoob, P., Shahbazian, Sh.: Revisiting the foundations of the quantum theory of atoms in molecules (QTAIM): Toward a rigorous definition of topological atoms. Int. J. Quantum Chem. 109, 726–732 (2009)CrossRefGoogle Scholar
  32. Nasertayoob, P., Shahbazian, Sh.: Revisiting the foundations of the quantum theory of atoms in molecules (QTAIM): The subsystem variational procedure and the finite nuclear models. Int. J. Quantum Chem. 110, 1188–1196 (2010)Google Scholar
  33. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)Google Scholar
  34. Phillips, P., Davidson, E.R.: Chemical potential for harmonically interacting particles in a harmonic potential. Int. J. Quantum Chem. 23, 185–194 (1983)CrossRefGoogle Scholar
  35. Pino, R., Mujica, V.: Non-Born-Oppenhiemer correction in an exactly solvable model of the hydrogen ion molecule. J. Phys. B: At. Mol. Phys. 31, 4537–4544 (1998)CrossRefGoogle Scholar
  36. Polychronakos, A.P.: The physics and mathematics of Calogero particles. J. Phys. A: Math. Gen. 39, 12793–12845 (2006)CrossRefGoogle Scholar
  37. Reinhard, P.-G., Maruhn, J.A., Umar, A.S., Oberacker, V.E.: Localization in light nuclei. Phys. Rev. C 83, 034312-1–034312-5 (2011)CrossRefGoogle Scholar
  38. Shahbazian, Sh: Letter to editor: The mathematical soundness and the physical content of the subsystem variational procedure of the QTAIM. Int. J. Quantum Chem. 111, 4497–4500 (2011)CrossRefGoogle Scholar
  39. Shahbazian, S.: Beyond the orthodox QTAIM: Motivations, current status, prospects and challenges. Found. Chem. (2013). doi: 10.1007/s10698-012-9170-0 Google Scholar
  40. Tal, Y., Bader, R.F.W.: Studies of the energy density functional approach. I. Kinetic energy. Int. J. Quantum Chem. Suppl. 12, 153–168 (1978)Google Scholar
  41. von Oertzen, W., Freer, M., Kanada-En’yo, Y.: Nuclear clusters and nuclear molecules. Phys. Rep. 432, 43–113 (2006)CrossRefGoogle Scholar
  42. Weinstein, H., Politzer, P., Srebrenik, S.: A misconception concerning the electronic density distribution of an atom. Theor. Chem. Acta 38, 159–163 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of ChemistryShahid Beheshti UniversityEvin, TehranIran

Personalised recommendations