Foundations of Chemistry

, Volume 15, Issue 1, pp 13–29 | Cite as

Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form

Article

Abstract

Electronegativity, described by Linus Pauling described as “The power of an atom in a molecule to attract electrons to itself” (Pauling in The nature of the chemical bond, 3rd edn, Cornell University Press, Ithaca, p 88, 1960), is used to predict bond polarity. There are dozens of methods for empirically quantifying electronegativity including: the original thermochemical technique (Pauling in J Am Chem Soc 54:3570–3582, 1932), numerical averaging of the ionisation potential and electron affinity (Mulliken in J Chem Phys 2:782–784, 1934), effective nuclear charge and covalent radius analysis (Sanderson in J Chem Phys 23:2467, 1955) and the averaged successive ionisation energies of an element’s valence electrons (Martynov and Batsanov in Zhurnal Neorganicheskoi Khimii 5:3171–3175, 1980), etc. Indeed, there are such strong correlations between numerous atomic parameters—physical and chemical—that the term “electronegativity” integrates them into a single dimensionless number between 0.78 and 4.00 that can be used to predict/describe/model much of an element’s physical character and chemical behaviour. The design of the common and popular medium form of the periodic table is in large part determined by four quantum numbers and four associated rules. However, adding electronegativity completes the construction so that it displays the multi-parameter periodic law operating in two dimensions, down the groups and across the periods, with minimal ambiguity.

Keywords

Electronegativity Periodic table Element Substance Periodicity 

References

  1. Allen, L.C.: Extension and completion of the periodic table. J. Am. Chem. Soc. 144, 1510–1511 (1992)CrossRefGoogle Scholar
  2. Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nuc. Chem. 17, 215–221 (1961)CrossRefGoogle Scholar
  3. Baker, G.F.: A text-book of elementary chemistry: theoretical and inorganic, Mokton & Co., Louisville, KY, pp 12–19 (1870). The full text of the 1891 2nd edition is available at: http://www.archive.org/stream/textbookofelemen00barkrich/textbookofelemen00barkrich_djvu.txt
  4. Clementi, E., Raimondi, D.L.: Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686 (1963)CrossRefGoogle Scholar
  5. Clementi, E., Raimondi, D.L., Reinhardt, W.P.: Atomic screening constants from SCF functions II. J. Chem. Phys. 47, 1300 (1967)CrossRefGoogle Scholar
  6. Feynman, R.: The Feynman Lectures on Physics, vol. III, pp. 18–19. Addison-Wesley, Boston (1965)Google Scholar
  7. Gordy, W.: A new method of determining electronegativity from other atomic properties. Phys. Rev. 69, 604–607 (1946)CrossRefGoogle Scholar
  8. Grimm, H.G.: Allgemeines über die verschiedenen Bindungsarten. Z. Elekrochem. 34, 430–435 (1928)Google Scholar
  9. Hendry, R.: Elements. In: Hendry, R.F., Needham P., Woody, I.A. (eds.) Handbook of the Philosophy of Science, vol 6: Philosophy of Chemistry, pp 263–266 (2012)Google Scholar
  10. Huggins, M.L.: Bond energies and polarities. J. Am. Chem. Soc. 75, 4123–4126 (1953)CrossRefGoogle Scholar
  11. Jensen, W.B.: A quantitative van Arkel Diagram. J. Chem. Educ. 72, 395–398 (1995)CrossRefGoogle Scholar
  12. Jensen, W.B.: Electronegativity from Avogadro to Pauling part I: origins of the electronegativity concept. J. Chem. Educ. 73, 11–20 (1996)CrossRefGoogle Scholar
  13. Jensen, W.B.: Logic, history, and the chemistry textbook. J. Chem. Educ. 75, 817–828 (1998)CrossRefGoogle Scholar
  14. Jensen, W.B.: Electronegativity from Avogadro to Pauling part II: late nineteenth- and early twentieth-century developments. J. Chem. Educ. 80, 279–287 (2003)CrossRefGoogle Scholar
  15. Janet, C.: Helicoidal classification of the elements. Chem. News. 138, 372–374 (1929)Google Scholar
  16. Hinze, J., Jaffe, H.H.: Electronegativity. I. Orbital electronegativity of neutral atoms. J. Am. Chem. Soc. 84, 540–546 (1962)CrossRefGoogle Scholar
  17. Laing, M.: The knights move in the periodic table. S. Afr. J. Sci. 87, 285–287 (1991)Google Scholar
  18. Laing, M.: A tetrahedron of bonding. Educ. Chem. 11, 160–163 (1993)Google Scholar
  19. Leach, M.L.: http://www.meta-synthesis.com/webbook/35_pt/pt_database.php (2004). Accessed 30th Oct 2011
  20. Leach, M.L.: http://www.meta-synthesis.com/webbook/38_laing/tetrahedra.html (2009). Accessed 30th Oct 2011
  21. Martynov, A.I., Batsanov, S.S.: New approach to determining the electronegativity of atoms. Zh. Neorg. Khim. 5, 3171–3175 (1980)Google Scholar
  22. Michaelson, H.B.: Relation between an atomic electronegativity scale and the work function. IBM J. Res. Dev. 22, 72–80 (1978)CrossRefGoogle Scholar
  23. Mulliken, R.S.: A new electroaffinity scale together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–784 (1934)CrossRefGoogle Scholar
  24. Paneth, F.A.: Brit. J. Philos. Sci., 13, 1 and 144 (1962). Reprinted Found. Chem. 5, 113 (2003)Google Scholar
  25. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932)CrossRefGoogle Scholar
  26. Pauling, L.: The Nature of the Chemical Bond, 3rd edn, p. 88. Cornell University Press, Ithaca (1960)Google Scholar
  27. Philips, J.C.: Dielectric definition of electronegativity. Phys. Rev. Lett. 20, 550–553 (1968)CrossRefGoogle Scholar
  28. Rayner-Canham, G.: Diagonality in the periodic table. Found. Chem. (2012a) (in press)Google Scholar
  29. Rayner-Canham, G.: Periodic patterns: the group (n) and group (n + 10) linkage. Found. Chem. (2012b) (in press)Google Scholar
  30. Sanderson, R.T.: Relation of stability ratios to Pauling electronegativities. J. Chem. Phys. 23, 2467 (1955)CrossRefGoogle Scholar
  31. Scerri, E.R.: Some aspects of the metaphysics of chemistry and the nature of the elements. HYLE—Int. J. Phil. Chem. 11, 127–145 (2005)Google Scholar
  32. Scerri, E.R.: The role of triads in the evolution of the periodic system, past and present. J. Chem. Educ. 85, 585–589 (2008)CrossRefGoogle Scholar
  33. Scerri, E.R.: The dual sense of the term “element,” attempts to derive the Madelung rule, and the optimal form of the periodic table, if any. Quantum Chem. 109, 959–971 (2009)CrossRefGoogle Scholar
  34. Stewart, P.J.: Charles Janet: unrecognized genius of the periodic system. Found. Chem. 12, 5–15 (2010)CrossRefGoogle Scholar
  35. Thomsen, J.: Z. Anorg. Chem. 9, 190 (1895)CrossRefGoogle Scholar
  36. Thyssen, P., Binnemans, K.: Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis. In: Benyahia, F, Eljack, F (eds.), CRC Handbook on the Physics and Chemistry of Rare Earths, 41, Ch. 248, pp 1–93, Burlington, Academic Press (2011)Google Scholar
  37. van Brakel, J.: Prehistory of the philosophy of chemistry. In: Hendry, R.F., Needham P., Woody, I.A. (eds.) Handbook of the Philosophy of Science, vol 6: Philosophy of Chemistry, pp 29–30 (2012)Google Scholar
  38. Walsh, A. D.: Factors affecting bond strengths. I. A possible new definition of electronegativity. Proc. R. Soc. Lond. A207 (1951)Google Scholar
  39. Winter, M.: http://www.webelements.com/(1993). Accessed 30th Oct 2011

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Meta-SynthesisBrightonUK

Personalised recommendations