Foundations of Chemistry

, Volume 12, Issue 2, pp 149–157 | Cite as

Why orbitals do not exist?

  • Martín Labarca
  • Olimpia Lombardi


In this paper we will address the problem of the existence of orbitals by analyzing the relationship between molecular chemistry and quantum mechanics. In particular, we will consider the concept of orbital in the light of the arguments that deny its referring character. On this basis, we will conclude that the claim that orbitals do not exist relies on a metaphysical reductionism which, if consistently sustained, would lead to consequences clashing with the effective practice of science in its different branches.


Orbital Wavefunction Molecular chemistry Quantum mechanics 



We are especially grateful to Eric Scerri for fruitful discussions. We also want to thank W. H. Eugen Schwarz and the participants of the ISPC Symposium 2008 for their interesting comments. This paper was supported by grants of CONICET, ANPCyT, UBA, UCEL and SADAF, Argentina.


  1. Amann, A.: Must a molecule have a shape? S. Afr. J. Chem. 45, 29–38 (1992)Google Scholar
  2. Berkovitz, J.: “Aspects of quantum non-locality” I and II. Stud. Hist. Philos. Mod. Phys. 29, 183–222 (1998). 509–545CrossRefGoogle Scholar
  3. Brion, C.E., Cooper, G., Zheng, Y., Litvinyuk, L.V., McCarthy, I.E.: Imaging of orbital electron densities by electron momentum spectrsocopy—a chemical interpretation of the binary (e, 2e) reaction. Chem. Phys. 70, 13–30 (2001)CrossRefGoogle Scholar
  4. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefGoogle Scholar
  5. French, S., Krause, D.: Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford (2006)Google Scholar
  6. Humphreys, C.J.: Electron seen in orbit. Nature 401, 49–52 (1999)CrossRefGoogle Scholar
  7. Itatani, J., Levesque, J., Zeidler, D., Niikura, H., Pépin, H., Kieffer, J.C., Corkum, P.B., Villeneuve, D.M.: Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)CrossRefGoogle Scholar
  8. Jacoby, M.: Picture-perfect orbitals. Chem. Eng. News 77, 8 (1999)Google Scholar
  9. Jenkins, Z.: Do you need to believe in orbitals to use them?: realism and the autonomy of chemistry. Philos. Sci. 70, 1052–1062 (2003)CrossRefGoogle Scholar
  10. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)Google Scholar
  11. Liegener, C.M., Del Re, G.: The relation of chemistry to other fields of science: atomism, reductionism, and inversion of reduction. Epistemologia 10, 269–284 (1987a)Google Scholar
  12. Liegener, C.M., Del Re, G.: Chemistry versus physics, the reduction myth, and the unity of science. Zeitschrift für Allgemeine Wissenschaftstheorie 18, 165–174 (1987b)CrossRefGoogle Scholar
  13. Litvinyuk, I.V., Zheng, Y., Brion, C.E.: Valence shell orbital imaging in adamantane by electron momentum spectroscopy and quantum chemical calculations. Chem. Phys. 253, 41–50 (2000)CrossRefGoogle Scholar
  14. Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world. Found. Chem. 7, 125–148 (2005)CrossRefGoogle Scholar
  15. Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world: a response to Needham. Found. Chem. 8, 81–92 (2006)CrossRefGoogle Scholar
  16. Matta, C.F., Gillespie, R.J.: Understanding and interpreting molecular electron density distributions. J. Chem. Educ. 79, 1141–1152 (2002)CrossRefGoogle Scholar
  17. Ostrosky, V.N.: Towards a philosophy of approximations in the ‘exact’ sciences. Hyle-Int. J. Philos. Chem. 11, 101–126 (2005)Google Scholar
  18. Pascual, J.I., Gómez-Herrero, J., Rogero, C., Baró, A.M., Sánchez-Portal, D., Artacho, E., Ordejón, P., Soler, J.M.: Seeing molecular orbitals. Chem. Phys. Lett. 321, 78–82 (2000)CrossRefGoogle Scholar
  19. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)Google Scholar
  20. Primas, H.: Hierarchic quantum descriptions and their associated ontologies. In: Laurikainen, K.V., Montonen, C., Sunnarborg, K. (eds.) Symposium on the Foundations of Modern Physics 1994. Editions Frontières, Gif-sur-Yvette (1994)Google Scholar
  21. Primas, H.: Emergence in exact natural sciences. Acta Polytech. Scand. 91, 83–98 (1998)Google Scholar
  22. Scerri, E.R.: Have orbitals really been observed? J. Chem. Educ. 77, 1492–1494 (2000)CrossRefGoogle Scholar
  23. Scerri, E.R.: The recently claimed observation of atomic orbitals and some related philosophical issues. Philos. Sci. 68, S76–S88 (2001)CrossRefGoogle Scholar
  24. Schwarz, W.H.E.: Measuring orbitals: provocation or reality? Angew. Chem. Int. Ed. 45, 1508–1517 (2006)CrossRefGoogle Scholar
  25. Spence, J.C., O’Keefe, M., Zuo, J.M.: Have orbitals really been observed? J. Chem. Educ. 78, 877 (2001)Google Scholar
  26. Vemulapalli, G.K., Byerly, H.: Remnants of reductionism. Found. Chem. 1, 17–41 (1999)CrossRefGoogle Scholar
  27. Wang, S.G., Schwarz, W.H.E.: On closed-shell interactions, polar covalences, d shell holes, and direct images of orbitals: the case of cuprite. Angew. Chem. Int. Ed. 39, 1757–1762 (2000)CrossRefGoogle Scholar
  28. Wooley, R.G.: Must a molecule have a shape? Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  29. Wooley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bonding 52, 1–35 (1982)CrossRefGoogle Scholar
  30. Yam, P.: Seeing the bonds. Sci. Am. 281, 28 (1999)CrossRefGoogle Scholar
  31. Zuo, J.M., Kim, M., O’Keefe, M., Spence, J.C.H.: Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nature 401, 49–52 (1999)CrossRefGoogle Scholar
  32. Zurer, P.: Chemistry’s top five achievements. Chem. Eng. News 77, 38–40 (1999)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CONICET, Universidad Nacional de QuilmesQuilmes, Buenos AiresArgentina
  2. 2.CONICET, Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations