Advertisement

Foundations of Chemistry

, Volume 11, Issue 2, pp 105–122 | Cite as

The weak nuclear force, the chirality of atoms, and the origin of optically active molecules

  • Richard M. Pagni
Article

Abstract

Although chemical phenomena are primarily associated with electrons in atoms, ions, and molecules, the masses, charges, spins, and other properties of the nuclei in these species contribute significantly as well. Isotopes, for instance, have proven invaluable in chemistry, in particular the elucidation of reaction mechanisms. Elements with unstable nuclei, for example carbon-14 undergoing beta decay, have enriched chemistry and many other scientific disciplines. The nuclei of all elements have a much more subtle and largely unknown effect on chemical phenomena. All nuclei are innately chiral and, because electrons can penetrate nuclei, all atoms and molecules are likewise chiral. This article describes in considerable detail the discovery of chiral nuclei, how this unusual chirality may influence the chemical behavior of atoms and molecules, and how atomic chirality may have been responsible for the synthesis of optically active molecules in the pre-biotic world.

Keywords

Chiral nuclei β Decay Inverse β decay Elementary particles Four forces Standard model Electron and positron chirality Theoretical calculations Pre-biotic chemistry Origin of life 

References

  1. Arimondo, E., Glorieux, P., Oka, T.: Observation of inverted infrared lamb dips in separated isomers. Opt. Commun. 23, 369–372 (1977). doi: 10.1016/0030-4018(77)90384-4 CrossRefGoogle Scholar
  2. Barron, L.D., Buckingham, A.D.: Time reversal and molecular properties. Acc. Chem. Res. 34, 781–789 (2001). doi: 10.1021/ar0100576 CrossRefGoogle Scholar
  3. Bonner, W.A., Flores, J.J.: Experiments of the origins of optical activity. Orig. Life 6, 187–194 (1975). doi: 10.1007/BF01372404 CrossRefGoogle Scholar
  4. Bonner, W.A., Lemmon, R.M.: Radiolysis, racemization and the origin of molecular asymmetry in the biosphere. J. Mol. Evol. 11, 95–99 (1978). doi: 10.1007/BF01733885 CrossRefGoogle Scholar
  5. Bouchiat, M.A., Bouchiat, C.: Parity violation induced by weak neutral currents in atomic physics. J. Phys. (Paris) 35, 899–927 (1974). doi: 10.1051/jphys:019740035012089900 Google Scholar
  6. Bouchiat, M.A., Bouchiat, C.: Parity violation in atoms. Rep. Prog. Phys. 60, 1351–1396 (1997). doi: 10.1088/0034-4885/60/11/004 CrossRefGoogle Scholar
  7. Buckingham, J.: Chasing the molecule. Sutton Publishing, Thrupp (2004)Google Scholar
  8. Byrne, J., Dawber, P.G., Spain, A., Williams, A., Dewy, M.S., Gilliam, D.M., Greene, G.L., Lamanze, G.P., Scott, R.D., Pauwels, J., Eykens, R., Lamberty, A.: Measurement of the neutron lifetime by counting trapped protons. Phys. Rev. Lett. 65, 289–292 (1990). doi: 10.1103/PhysRevLett.65.289 CrossRefGoogle Scholar
  9. Byrne, J., Dawber, P.G., Habeck, C.G., Smidt, S.J., Spain, J.A., Williams, A.P.: A revised value for the neutron lifetime measured using a penning trap. Europhys. Lett. 33, 187–192 (1996). doi: 10.1209/epl/i1996-00319-x CrossRefGoogle Scholar
  10. Cintas, P.: Elementary asymmetry and biochirality: no longer twinned. ChemPhysChem. 2, 409–410 (2001). doi: 10.1002/1439-7641(20010716)2:7<409::AID-CPHC409>3.0.CO;2-B CrossRefGoogle Scholar
  11. Cintas, P.: Sublime arguments rethinking: the generation of homochirality under prebiotic conditions. Angew. Chem. Int. Ed. 47, 2918–2920 (2008). doi: 10.1002/anie.200705192 CrossRefGoogle Scholar
  12. Close, F., Marten, M., Sutton, C.: The particle odyssey: a journey to the heart of the matter. Oxford University, Oxford (2002)Google Scholar
  13. Compton, R.N., Pagni, R.M.: Chirality of biomolecules. In: Bederson, B., Walther, H. (eds.) Advances in atomic, molecular, and optical physics, vol. 48, pp. 219–261. Academic Press, Amsterdam (2002)Google Scholar
  14. Crassous, J., Chardonnet, C., Saue, T., Schwerdtfeger, P.: Recent experimental and theoretical developments towards the observation of parity violation (PV) effects in molecules by spectroscopy. Org. Biomol. Chem. 3, 2218–2224 (2005). doi: 10.1039/b504212g CrossRefGoogle Scholar
  15. Daussy, C., Marrel, T., Amy-Klein, A., Nguyen, C.T., Bordé, P., Chardonnet, C.: Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy. Phys. Rev. Lett. 83, 1554–1557 (1999). doi: 10.1103/PhysRevLett.83.1554 CrossRefGoogle Scholar
  16. Dosch, H.G.: Beyond the nanoworld—quarks, leptons, and gauge bosons. A. K. Peters, Wellesley (2008)Google Scholar
  17. Frank, F.C.: On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–460 (1953). doi: 10.1016/0006-3002(53)90082-1 CrossRefGoogle Scholar
  18. Frauenfelder, H., Bobone, R., von Goeler, E., Levine, N., Lewis, H.R., Peacock, R.N., Rossi, A., De Paquali, G.: Parity and the polarization of electrons. Phys. Rev. 106, 386–387 (1957). doi: 10.1103/PhysRev.106.386 CrossRefGoogle Scholar
  19. Fuss, W.: Does life originate from a single molecule? Chirality 21, 299–304 (2009). doi: 10.1002/chir.20576 CrossRefGoogle Scholar
  20. Garwin, R.L., Lederman, L.M., Weinrich, M.: Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415–1417 (1957). doi: 10.1103/PhysRev.105.1415 CrossRefGoogle Scholar
  21. Greiner, W., Müller, B.: Gauge theories of weak interactions. Springer, Berlin, Germany (2000)Google Scholar
  22. Guth, A.H.: The inflationary universe. Perseus Books, Cambridge (1997)Google Scholar
  23. Harris, D.C., Bertolucci, M.D.: Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Dover, New York (1978)Google Scholar
  24. Hedman, M.: The age of everything: how science explores the past. University of Chicago, Chicago (2007)Google Scholar
  25. Hegstrom, R.A.: β Decay and the origins of biological chirality: theoretical insights. Nature 297, 643–647 (1982). doi: 10.1038/297643a0 CrossRefGoogle Scholar
  26. Hegstrom, R.A.: Weak neutral currents and β radiolysis effects on the origin of biomolecular chirality. Nature 315, 749–750 (1985). doi: 10.1038/315749a0 CrossRefGoogle Scholar
  27. Hegstrom, R.A.: Parity violation and chiral symmetry breaking of a racemic mixture. Biosystems 20, 49–57 (1987). doi: 10.1016/0303-2647(87)90019-0 CrossRefGoogle Scholar
  28. Hegstrom, R.A., Rein, D.W., Sandars, P.G.H.: Calculation of the parity nonconserving energy difference between mirror-image molecules. J. Chem. Phys. 73, 2329–2341 (1980). doi: 10.1063/1.440383 CrossRefGoogle Scholar
  29. Hegstrom, R.A., Rich, A., van House, J.: New estimates of asymmetric decomposition of racemic mixtures by natural β-radiation sources. Nature 313, 391–392 (1985). doi: 10.1038/313391a0 CrossRefGoogle Scholar
  30. Horný, L., Mariotti, F., Quack, M.: Ab initio study of some persistent nitroxide radicals. Chimia (Aarau) 62, 256–259 (2008). doi: 10.2533/chimia.2008.256 CrossRefGoogle Scholar
  31. Icke, V.: The force of symmetry. Cambridge University, Cambridge (1995)Google Scholar
  32. Kaufman, D.S., Miller, G.H.: Overview of amino acid geochronology. Comp. Biochem. Mol. Biol. B 102B, 199–204 (1992). doi: 10.1016/0305-0491(92)90110-D CrossRefGoogle Scholar
  33. Keszthelyi, L.: Possibilities to measure the parity-violating energy differences. J. Biol. Phys. 20, 241–245 (1994). doi: 10.1007/BF00700442 CrossRefGoogle Scholar
  34. Koks, F.S.J., van Klinken, J.: Investigation of β-polarization at low velocities with β-particles from the decay of tritium. Nucl. Phys. A 272, 61–81 (1976). doi: 10.1016/0375-9474(76)90318-3 CrossRefGoogle Scholar
  35. Kondepudi, D., Nelson, D.K.: Weak neutral currents and the origin of biomolecular chirality. Nature 314, 438–441 (1985). doi: 10.1038/314438a0 CrossRefGoogle Scholar
  36. Lahamer, A.S., Mahurin, S.M., Compton, R.N., House, D., Laerdahl, J.K., Lein, M., Schwerdtfeger, P.: Search for parity-violating energy differences between enantiomers of a chiral iron complex. Phys. Rev. Lett. 85, 4470–4473 (2000). doi: 10.1103/PhysRevLett.85.4470 CrossRefGoogle Scholar
  37. Lederman, L.M., Hill, C.T.: Symmetry and the beautiful universe. Prometheus, Amherst (2008)Google Scholar
  38. Lee, T.D., Yang, C.N.: Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956). doi: 10.1103/PhysRev.104.254 CrossRefGoogle Scholar
  39. Lee, T.D., Yang, C.N.: Parity nonconservation and a two-component theory of the neutrino. Phys. Rev. 105, 1671–1674 (1957). doi: 10.1103/PhysRev.105.1671 CrossRefGoogle Scholar
  40. Lucas, D.M., Warrington, R.B., Stacey, D.N., Thompson, C.D.: Search for parity nonconserving optical rotation in atomic samarium. Phys. Rev. A 58, 3457–3471 (1998). doi: 10.1103/PhysRevA.58.3457 CrossRefGoogle Scholar
  41. Macpherson, M.J.D., Zetie, K.P., Warrington, R.B., Stacey, D.N., Hoare, J.P.: Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 67, 2784–2787 (1991). doi: 10.1103/PhysRevLett.67.2784 CrossRefGoogle Scholar
  42. Meekhof, D.M., Vetter, P.A., Majumder, P.K., Lamoreaux, S.K., Fortson, E.N.: Optical-rotation technique used for a high-precision measurement of parity nonconservation in atomic lead. Phys. Rev. A 52, 1895–1908 (1995). doi: 10.1103/PhysRevA.52.1895 CrossRefGoogle Scholar
  43. Oerter, R.: The theory of almost everything. Pi Press, New York (2006)Google Scholar
  44. Pagni, R.M., Bartmess, J.: A photochemical mechanism for homochirogenesis. J. Phys. Chem. A 111, 10604–10608 (2007). doi: 10.1021/jp074182w CrossRefGoogle Scholar
  45. Postma, H., Huiskamp, W.J., Miedema, A.R., Steenland, M.J., Tolhoek, H.A., Gorter, C.J.: Asymmetry of positron emission by polarized 58Co nuclei. Nucl. Phys. 23, 259–260 (1957)Google Scholar
  46. Pullman, B.: The atom in the history of human thought. Oxford University, Oxford (2001)Google Scholar
  47. Quack, M.: How important is parity violation for molecular and biomolecular chirality. Angew. Chem. Int. Ed. 41, 4618–4630 (2002). doi: 10.1002/anie.200290005 CrossRefGoogle Scholar
  48. Quack, M., Stohner, J.: Parity violation in chiral molecules. Chimia (Aarau) 59, 530–538 (2005). doi: 10.2533/000942905777676119 CrossRefGoogle Scholar
  49. Quigg, C.: Gauge theories of the strong, weak, and electromagnetic interactions. Benjamine/Cummings, Reading (1983)Google Scholar
  50. Quigg, C.: Particles and the standard model. In: Fraser, G. (ed.) The new physics for the twenty-first century, pp. 86–118. Cambridge University, Cambridge (2006)Google Scholar
  51. Quinn, H.R., Nir, Y.: The mystery of the missing antimatter. Princeton University, Princeton (2008)Google Scholar
  52. Rein, D.W., Hegstrom, R.A., Sandars, P.G.H.: Parity non-conserving energy difference between mirror image molecules. Phys. Lett. 71A, 499–502 (1979)Google Scholar
  53. Rigden, J.S.: Hydrogen: the essential element. Harvard University, Cambridge (2003)Google Scholar
  54. Rocke, A.: Chemical atomism in the nineteenth century: from Dalton to Cannizzaro. Ohio State University, Columbus (1989)Google Scholar
  55. Salam, A.: The role of chirality in the origin of life. J. Mol. Evol. 33, 105–113 (1991). doi: 10.1007/BF02193624 CrossRefGoogle Scholar
  56. Sandars, P.: Atoms are chiral too. Sci. Spectr. 70–74 (1998)Google Scholar
  57. Scerri, E.: The periodic table: its story and its significance. Oxford University, Oxford (2006)Google Scholar
  58. Schumm, B.A.: Deep down things. Johns Hopkins University, Baltimore (2004)Google Scholar
  59. Schwerdtfeger, P., Gierlich, J., Bollwein, T.: Large parity-violating effects in heavy-metal-containing chiral compounds. Angew. Chem. Int. Ed. 42, 1293–1295 (2003). doi: 10.1002/anie.200390333 CrossRefGoogle Scholar
  60. Sullivan, R., Pyda, M., Pak, J., Wunderlich, B., Thompson, J., Pagni, R., Pan, H., Barnes, C., Schwerdtfeger, P., Compton, R.: Search for electroweak interactions in amino acid crystals. II. The Salam hypothesis. J. Phys. Chem. A 107, 6674–6680 (2003). doi: 10.1021/jp0225673 CrossRefGoogle Scholar
  61. Ullman, J.D., Frauenfelder, H., Lipkin, H.J., Rossi, A.: Determination of electron and positron helicity with Møller and Bhabha scattering. Phys. Rev. 122, 536–548 (1961). doi: 10.1103/PhysRev.122.536 CrossRefGoogle Scholar
  62. Vester, F., Ulbricht, T.L.V., Krauch, H.: Optische aktivität und die paritätsverletzung im β-zerfall. Naturwissenschaften 46, 68 (1959). doi: 10.1007/BF00599091 CrossRefGoogle Scholar
  63. Vetter, P.A., Meekhof, D.M., Majumder, P.K., Lamoreaux, S.K., Forston, E.N.: Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium. Phys. Rev. Lett. 74, 2658–2661 (1995). doi: 10.1103/PhysRevLett.74.2658 CrossRefGoogle Scholar
  64. Wagnière, G.H.: On chirality and the universal asymmetry—reflections on image and mirror image. Wiley–VCH, Zürich (2007)CrossRefGoogle Scholar
  65. Wang, W., Yi, F., Ni, Y., Zhao, Z., Jin, X., Tang, Y.: Parity violation of electroweak force in phase transitions of single crystals of d- and l-alanine and valine. J. Biol. Phys. 26, 51–65 (2000). doi: 10.1023/A:1005187416704 CrossRefGoogle Scholar
  66. Wesendrup, R., Laerdahl, J.K., Compton, R.N., Schwerdtfeger, P.: Biomolecular homochirality and electroweak interactions. I. The Yamagata hypothesis. J. Phys. Chem. A 107, 6668–6673 (2003). doi: 10.1021/jp022568v CrossRefGoogle Scholar
  67. Weinberg, S.: The first three minutes. Basic Books, New York (1993)Google Scholar
  68. Wood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E.: Measurement of parity nonconservation and an anapole moment in cesium. Science 275, 1759–1763 (1997). doi: 10.1126/science.275.5307.1759 CrossRefGoogle Scholar
  69. Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957). doi: 10.1103/PhysRev.105.1413 CrossRefGoogle Scholar
  70. Yamagata, Y.: A hypothesis for the asymmetric appearance of biomolecules on earth. J. Theor. Biol. 11, 495–498 (1966). doi: 10.1016/0022-5193(66)90110-X CrossRefGoogle Scholar
  71. Zee, A.: Fearful symmetry: the search for beauty in modern physics. Princeton University, Princeton (1999)Google Scholar
  72. Zel’Dovich, Y.A.: Electromagnetic interactions in the loss of parity. Sov. Phys. JETP 6, 1184–1186 (1958)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations