A Revised Periodic Table: With the Lanthanides Repositioned

Abstract

The lanthanide elements from lanthanum to lutetium inclusive are incorporated into the body of the periodic table. They are subdivided into three sub-groups according to their important oxidation states: La to Sm, Eu to Tm, Yb and Lu, so that Eu and Yb fall directly below Ba; La, Gd, Lu form a column directly below Y; Ce and Tb fall in a vertical line between Zr and Hf. Pm falls below Tc; both are radioactive, and not naturally occurring. The elements with easily attained 2+ and 4+ oxidation states are grouped and clearly differentiated. Gadolinium has an important position as the centre of four triads in the block of elements that surround it– La, Gd, Lu; Ba, Gd, Hf; Eu, Gd, Tb; Yb, Gd, Ce. This new arrangement has the advantages of compactness, simplicity and clarity – there are no tie lines; and important oxidation states of these metals are emphasized. The actinides are also accommodated within this system, and element 114 falls naturally below lead in Group 14.

This is a preview of subscription content, log in to check access.

References

  1. Bartlett J. Pliny the Elder, Ex Africa semper aliquid novi, p. 117; Ecclesiastes I:9, and there is no new thing under the sun, p. 26. Familiar Quotations, 15th edn. London: Macmillan, 1980.

  2. WH. Brock (1992) The Fontana History of Chemistry Harper Collins London 327

    Google Scholar 

  3. NM. Brooks (2002) ArticleTitleDeveloping the Periodic Law: Mendeleev’s Work During 1869–1871 Found. Chem. 4 127–147 Occurrence Handle10.1023/A:1016022129746

    Article  Google Scholar 

  4. ED. Cater (1978) ArticleTitleHigh Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of Periodicity J. Chem. Educ. 55 697–701

    Google Scholar 

  5. RM. Caven GD. Lander (1939) Systematic Inorganic Chemistry 6th edn Blackie Glasgow 28

    Google Scholar 

  6. F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann. Advanced Inorganic Chemistry, 6th edn. New York: John Wiley, 1999, pp. 1108–1129.

  7. S.A. Cotton. Scadium, Yttrium and the Lanthanides. In R.B. King (Ed.), Encyclopedia of Inorganic Chemistry, Vol. 7, p. 3596. New York: John Wiley, 1994.

  8. MW. Cronyn (2003) ArticleTitleThe Proper Place for Hydrogen in the Periodic Table J. Chem. Educ. 80 947–951

    Google Scholar 

  9. E.S. Dana. A Textbook of Mineralogy, 4th edn. rev. W.E. Ford. New York: John Wiley, 1932, pp. 526, 620, 634.

  10. HC. Deming (1925) General Chemistry John Wiley New York 190

    Google Scholar 

  11. D. Vault Particlede (1944) J. Chem. Educ. 21 575–581

    Google Scholar 

  12. J. Donohue. The Structures of the Elements. New York: John Wiley, 1974, pp. 88–95 (cerium), 103–105 (gadolinium), 124 (summary of physical characteristics).

  13. B.E. Douglas, D.H. McDaniel and J.J. Alexander. Concepts and Models of Inorganic Chemistry, 3rd edn. New York: John Wiley, 1994, pp. 28–29, 732–738.

  14. J. Emsley (1989) The Elements Clarendon Press Oxford 241–245

    Google Scholar 

  15. HG. Friedman GR. Choppin DG. Feuerbacher (1964) ArticleTitleThe Shapes of the f Orbitals J. Chem. Educ. 41 354–358

    Google Scholar 

  16. N.N. Greenwood and A. Earnshaw. Chemistry of the Elements. Oxford: Pergamon, 1984, pp. 1104–1107, 1114–1115, 1423–1434.

  17. F.A. Hart. Scandium, Yttrium and the Lanthanides. In G. Wilkinson, R.D.Gillard and J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry. Vol. 3, pp. 1059–1127. Oxford: Pergamon, 1987.

  18. D.C. Hoffman and D.M. Lee. Chemistry of the Heaviest Elements–One Atom at a Time. J.Chem. Educ. 76: 332–347, 1999. Note the unusual format of the actinide series in the periodic table on p. 334.

    Google Scholar 

  19. J.A. Huheey, E.A. Keiter and R.L. Keiter. Inorganic Chemistry 4th edn. New York: Harper Collins, 1993, pp. 114–117 (M3+ radii), pp. 599–612.

  20. A.J. Ihde. The Development of Modern Chemistry. New York: Dover, 1984. Brauner, p. 252; Werner, 254; Rare earths, 374; Moseley and Bohr, 588–594.

  21. WB. Jensen (1982) ArticleTitleThe Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic Table J. Chem. Educ. 59 634–636

    Google Scholar 

  22. DA. Johnson (1980) ArticleTitlePrinciples of Lanthanide Chemistry J. Chem. Educ. 57 475–477

    Google Scholar 

  23. DA. Johnson (1982) Some Thermodynamic Aspects of Inorganic Chemistry. 2nd edn CUP Cambridge 158–168

    Google Scholar 

  24. M. Kaji DI. Mendeleev’s (2002) ArticleTitleConcept of Chemical Elements and The Principles of Chemistry Bull. Hist. Chem. 27 4–16

    Google Scholar 

  25. PJ. Karol (2002) ArticleTitleThe Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond J. Chem. Educ. 79 60–63

    Google Scholar 

  26. RN. Keller (1962) ArticleTitleEnergy Level Diagrams and Extranuclear Building of the Elements J. Chem. Educ. 39 289–293

    Google Scholar 

  27. H. Kragh (2001) ArticleTitleThe First Subatomic Explanations of the Periodic System Found. Chem. 3 129–143 Occurrence Handle10.1023/A:1011448410646

    Article  Google Scholar 

  28. T.S. Kuhn. The Structure of Scientific Revolutions, 2nd edn. Chicago: U. of Chicago Press, 1970, pp. 59, 62, 71, 80, 85, 109 especially.

  29. M. Laing (1989) ArticleTitleThe Periodic Table–again Educ. Chem. 26 177–178

    Google Scholar 

  30. M. Laing (1999) ArticleTitleThe Knight’s Move in the Periodic Table Educ. Chem. 36 160–161

    Google Scholar 

  31. M. Laing (2001a) ArticleTitlePeriodic Patterns J. Chem. Educ. 78 877

    Google Scholar 

  32. M. Laing (2001b) ArticleTitleMelting Point, Density, and Reactivity of Metals J. Chem. Educ. 78 1054–1058

    Google Scholar 

  33. M. Laing (2001c) ArticleTitleHow Useful is Electron Configuration s2? Educ. Chem. 38 161–163

    Google Scholar 

  34. PF. Lang BC. Smith (2003) ArticleTitleIonization Energies of Atoms and Atomic Ions J. Chem. Educ. 80 938–946

    Google Scholar 

  35. EG. Mazurs (1974) Graphic Representations of the Periodic System During One Hundred Years 2nd edn U of Alabama Press Alabama 40–42

    Google Scholar 

  36. J.W. Mellor G.D. Parkes (Eds) (1951) Mellor’s Modern Inorganic Chemistry Longmans Green, London

    Google Scholar 

  37. T. Moeller (1965) The Chemistry of the Lanthanides Chapman and Hall London

    Google Scholar 

  38. T. Moeller (1970) ArticleTitlePeriodicity and the Lanthanides and Actinides J. Chem. Educ. 47 417–423

    Google Scholar 

  39. Moeller T. The Lanthanides. In J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson (Eds), Comprehensive Inorganic Chemistry. Vol 4, pp. 1–101, especially p. 6 and 21. Oxford: Pergamon, 1973.

  40. H.G.J. Moseley. The High Frequency Spectra of the Elements. Phil. Mag. 26: 1024–1034, 1913, and 27: 703–713, 1914.

  41. RV. Parish (1977) The Metallic Elements Longman London 142–155

    Google Scholar 

  42. JR. Partington (1937) A Text-Book of Inorganic Chemistry 5th edn. Macmillan London 411

    Google Scholar 

  43. KS. Pitzer (1979) ArticleTitleRelativistic Effects on Chemical Properties Acc. Chem. Res. 12 271–276 Occurrence Handle10.1021/ar50140a001

    Article  Google Scholar 

  44. P. Pyykkö JP. Desclaux (1979) ArticleTitleRelativity and the Periodic System of Elements Acc. Chem. Res. 12 276–281

    Google Scholar 

  45. P. Pyykkö (2002) ArticleTitleRelativity, Gold, Closed-Shell Interactions Angewandte Chemie International Edition. 41 3573–3578

    Google Scholar 

  46. H. Remy. Treatise on Inorganic Chemistry, Vol II, pp. 30–43, 478–501; tables 54 and 55. Amsterdam: Elsevier, 1956.

  47. R. Rich. Periodic Correlations. New York: Benjamin, 1965, pp. 2, 3, 4, 61, 80.

  48. RT. Sanderson (1964) ArticleTitleA Rational Periodic Table J. Chem. Educ. 41 187–189

    Google Scholar 

  49. RT. Sanderson (1967) Inorganic Chemistry Reinhold New York

    Google Scholar 

  50. E. Scerri. The Periodic Table: The Ultimate Paper Tool in Chemistry. In E.Klein (Ed.), Tools and Modes of Representation in the Laboratory Sciences, pp. 163–177. Dordrecht: Kluwer Academic, 2001.

  51. GT. Seaborg (1945) ArticleTitleThe Chemical and Radioactive Properties of the Heavy Elements Chem. Eng. News 23, December 10 2190–2193

    Google Scholar 

  52. GT. Seaborg (1969) ArticleTitleProspects for Further Considerable Extension of the Periodic Table J. Chem. Educ. 46 626–634 Occurrence Handle10.1021/ed046p626

    Article  Google Scholar 

  53. W.F. Sheehan. Physical Chemistry. Quoted in H.H. Sisler. Electronic Structure, Properties, and the Periodic Law, p. 33. New York, Reinhold, 1963. Boston: Allyn and Bacon, 1961.

  54. NV. Sidgwick (1950) The Chemical Elements and Their Compounds Vol 1. Clarendon Press Oxford 439–457

    Google Scholar 

  55. T. Ternstrom (1964) ArticleTitleA Periodic Table J. Chem. Educ. 41 190–191

    Google Scholar 

  56. ER. Tufte (1983) The Visual Display of Quantitative Information Cheshire. Graphics Press Conn 51

    Google Scholar 

  57. JW. Spronsen Particlevan (1969) The Periodic System of Chemical Elements Elsevier Amsterdam 260–284

    Google Scholar 

  58. RC. Vickery (1953) Chemistry of the Lanthanons Butterworths London 11–58

    Google Scholar 

  59. R.C. Vickery. Scandium, Yttrium and the Lanthanides. In J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson. (Eds.), Comprehensive Inorganic Chemistry. Vol. 3, pp. 329–353, especially p. 331. Oxford: Pergamon, 1973.

  60. M.E. Weeks. Discovery of the Elements 6th edn. J. Chem. Educ. p. 671–683, 695–727.PA: Easton, 1956.

  61. A. Werner (1908) New Ideas on Inorganic Chemistry (Translated from the 2nd German edition) Longmans London

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Laing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laing, M. A Revised Periodic Table: With the Lanthanides Repositioned. Found Chem 7, 203 (2005). https://doi.org/10.1007/s10698-004-5959-9

Download citation

Keywords

  • Physical Chemistry
  • Oxidation State
  • Vertical Line
  • Periodic Table
  • Important Position