Activity of Closed d-Shells in Noble Metal Atoms

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Periodic Table has the column of the noble gas atoms (He, Ne, Ar, Kr, Xe, Rn) as one of its main pillars. Indeed the inert chemical nature of their closed shell structure is so striking that it is sometimes extended to all such structures. Is it true however that any closed shell, say a closed d-subshell will denote a lack of chemical activity? Take the noble metals for instance, so renowned for their catalytic capacity. Platinum has 10 electrons in its valence shell which makes one of its excited states to be a closed 5d10–6s0 state. Surely this state would not be expected to be crucial to the catalytic activity of platinum, or would it? Or take palladium whose ground state is precisely the 4d10–5s0 state, should we expect that an isolated Pd atom at near zero-point temperature would attack a closed-shell hydrogen molecule efficiently? We shall here show that this is precisely the case; the closed-shell excited states of nickel and platinum are indeed crucial, through symmetry avoided crossings, for their reactivity. Other valuable catalysts as ruthenium depend on their excited states with maximal d-shell occupancy for their activity. The most notable confirmation of this new finding; that closed d-shells are vital to the catalytic activity of noble metals however, is the case of palladium whose closed-shell ground state is indeed capable of attacking hydrogen and hydrocarbon molecules even at temperatures well below 10 K as was predicted theoretically and immediately confirmed experimentally.

This is a preview of subscription content, log in to check access.

References

  1. L. Andrews X. Wang L. Manceron (2001) J. Chem. Phys. 114 1559

    Google Scholar 

  2. K. Balasubramanian Z.K. Wang (1989) J. Chem. Phys. 91 7761

    Google Scholar 

  3. J.C. Barthelat P. Durand A. Serafini (1977) Mol. Phys. 33 159

    Google Scholar 

  4. M.R.A. Blomberg P.E.M. Siegbahn (1986) J. Chem. Phys. 90 1942

    Google Scholar 

  5. U.B. Brandemark M.R.A. Blomberg L.G.M. Peterson P.E.M. Siegbahn (1984) J. Phys. Chem. 88 4617 Occurrence Handle10.1021/j150664a035

    Article  Google Scholar 

  6. J.V. Burda N. Runeberg P. Pikko (1998) Chem. Phys. Lett. 238 635

    Google Scholar 

  7. S. Castillo E. Poulain O. Novaro (1991) Int. J. Quant. Chem. 25 577

    Google Scholar 

  8. S. Castillo A. Ramírez-Solís D. Díaz E. Poulain O. Novaro (1994) Mol. Phys. 81 825

    Google Scholar 

  9. F. Colmenares S. Castillo J.M. Martínez-Magadán O. Novaro E. Poulain (1992) Chem. Phys. Lett. 189 378

    Google Scholar 

  10. F. Colmenares J.G. McCaffrey O. Novaro (2001) J. Chem. Phys. 114 991 Occurrence Handle10.1063/1.1370952

    Article  Google Scholar 

  11. P. Durand J.C. Barthelat (1975) Theor. Chimica Acta 38 283

    Google Scholar 

  12. J. García-Prieto M.E. Ruíz O. Novaro (1985) J. Am. Chem. Soc. 107 5635

    Google Scholar 

  13. J. García-Prieto M.E. Ruíz O. Novaro (1985) J. Am. Chem. Soc. 107 5636

    Google Scholar 

  14. J. García-Prieto M.E. Ruíz G.A. Ozin O. Novaro (1984) J. Chem. Phys. 81 5920

    Google Scholar 

  15. H. Huber G.A. Ozin W.J. Power (1977) Inorg. Chem. 16 779

    Google Scholar 

  16. B. Huron J.P. Malreiu P. Rancurel (1973) J Chem. Phys. 58 5745 Occurrence Handle10.1063/1.1679199

    Article  Google Scholar 

  17. C. Jarque O. Novaro M.E. Ruíz (1987) Mol. Phys. 62 129

    Google Scholar 

  18. C. Jarque O. Novaro M.E. Ruíz J. García-Prieto (1986) J. Am. Chem. Soc. 108 3507 Occurrence Handle10.1021/ja00272a056

    Article  Google Scholar 

  19. J. Low W.A. Goddard (1984) J. Am. Chem. Soc. 106 8321

    Google Scholar 

  20. G.A. Ozin J García-Prieto (1986) J. Am. Chem. Soc. 108 3099 Occurrence Handle10.1021/ja00271a047

    Article  Google Scholar 

  21. G.A. Ozin C. Gracie (1984) J. Phys. Chem. 84 643

    Google Scholar 

  22. G.A. Ozin D.F. McIntosh S.A. Mitchell J. García-Prieto (1981) J. Am. Chem. Soc. 103 1574

    Google Scholar 

  23. G.A. Ozin, S.A. Mitchell and J. García-Prieto. Angew. Chem. Suppl. 785, 1982a

  24. G.A. Ozin S.A. Mitchell J. García-Prieto (1982) J. Phys. Chem. 86 473

    Google Scholar 

  25. E. Poulain J. García-Prieto M.E. Ruíz O. Novaro (1986) Int. J. Quantum Chem. 29 1181 Occurrence Handle10.1002/qua.560290517

    Article  Google Scholar 

  26. M.E. Ruíz J. García-Prieto O. Novaro (1984) J. Chem. Phys. 80 1529

    Google Scholar 

  27. M.E. Ruíz J. García-Prieto Poulain G.A Ozin R.A. Poirier S.M. Mattar I.G. Czismadia C. Gracie O. Novaro (1986) J. Phys. Chem. 90 279

    Google Scholar 

  28. M. Sánchez-Zamora O. Novaro M.E. Ruíz (1990) J. Chem. Phys. 94 2746

    Google Scholar 

  29. A. Serafini J.C. Barthelat P. Durand (1978) Mol. Phys. 36 1341

    Google Scholar 

  30. W.T. Typsoe G.L. Nyberg R.M. Lambert (1984) J. Phys. Chem. 88 1960

    Google Scholar 

  31. T. Yonezawa H. Nakatsuji M. Hada (1984) Croat. Chem. Acta 106 8321

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Octavio Novaro.

Additional information

† Member of El Colegio Nacional

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Novaro, O. Activity of Closed d-Shells in Noble Metal Atoms. Found Chem 7, 241–268 (2005). https://doi.org/10.1007/s10698-004-0787-5

Download citation

Keywords

  • Excited State
  • Noble Metal
  • Metal Atom
  • Catalytic Activity
  • Hydrogen Molecule