Skip to main content
Log in

Numerical modeling of laminar-turbulent transition in a boundary layer at a high freestream turbulence level

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined by numerically solving the Navier-Stokes equations. The results of direct numerical simulation of isotropic homogenous turbulence are taken as initial conditions. The solution obtained models laminar-turbulent transition in the flat-plate boundary layer at a high freestream turbulence level, time measured from the onset of the motion serving as the longitudinal coordinate. The solution makes it possible to estimate the effect of different factors, such as flow unsteadiness and nonlinearity and the characteristics of the freestream velocity fluctuation spectrum, on laminar-turbulent transition in the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Morkovin, “The many faces of transition,” in: C. S. Wells (ed.), Viscous Drag Reduction, Plenum Press, New York (1969), p. 1.

    Google Scholar 

  2. A. N. Gulyaev, V. E. Kozlov, V. R. Kuznetsov, B. I. Mineev, and A. N. Sekundov, “Interaction of a boundary layer with external turbulence,” Fluid Dynamics, 24, No. 5, 700 (1989).

    Article  Google Scholar 

  3. K. J. A. Westin, A. V. Boiko, B. G. Klingmann, V. V. Kozlov, and P. H. Alfredsson, “Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity,” J. Fluid Mech., 281, 193 (1994).

    Article  ADS  Google Scholar 

  4. M. Matsubara and P. H. Alfredsson, “Disturbance growth in boundary layers subjected to free stream turbulence,” J. Fluid Mech., 430, 149 (2001).

    Article  MATH  ADS  Google Scholar 

  5. F. P. Bertolotti, “Response of the Blasius boundary layer to free-stream vorticity,” Phys. Fluids, 9, 2286 (1997).

    Article  ADS  Google Scholar 

  6. P. Andersson, M. Berggren, and D. S. Henningson, “Optimal disturbances and bypass transition in boundary layers,” Phys. Fluids, 11, 134 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations,” J. Fluid Mech., 404, 289 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. S. J. Leib, D. W. Wundrow, and M. E. Goldstein, “Effects of free-stream turbulence and other vortical disturbances on a laminar boundary layer,” J. Fluid Mech., 380, 169 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. M. V. Ustinov, “Receptivity of the flat-plate boundary layer to free-stream turbulence,” Fluid Dynamics, 38, No. 3, 397 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. D. W. Wundrow and M. E. Goldstein, “Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow,” J. Fluid Mech., 426, 229 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. M. V. Ustinov, “Numerical modeling of the development of a streaky structure in a boundary layer at a high freestream turbulence level,” Fluid Dynamics, 39, No. 2, 260 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  12. B. L. Rozhdestvenksy and I. N. Simakin, “Secondary flows in a plane channel: their relationship and comparison with turbulent flows,” J. Fluid Mech., 147, 261 (1984).

    Article  ADS  Google Scholar 

  13. A. N. Gulyaev, V. E. Kozlov, and V. R. Kuznetsov, “Penetration of three-dimensional low-frequency freestream velocity fluctuations into the laminar flat-plate boundary layer,” Tr. TsIAM, No. 1287, 197 (1991).

    Google Scholar 

  14. B. L. Rozhdestvenksii and M. I. Stoinov, “Algorithms for integrating the Navier-Stokes equations with analogs of the mass, momentum, and energy conservation laws,” Keldysh Institute of AppliedMathematics, Preprint No. 119 (1987).

  15. M. V. Ustinov, “Investigation of subharmonic transition in a plane channel by direct numerical simulation,” Fluid Dynamics, 28, No. 3, 332 (1993).

    Article  Google Scholar 

  16. P. Jones, O. Mazur, and V. Uriba, “On the receptivity of the by-pass transition to the length scale of the outer stream turbulence,” Eur. J. Mech., Ser. B, Fluids, 19, 707 (2000).

    Google Scholar 

  17. S. C. Crow, “The spanwise perturbations of two-dimensional boundary layers,” J. Fluid Mech., 24, 153 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. T. M. Fisher, S. Hein, and U. Dallmann, “A theoretical approach for describing the secondary instability features in the three-dimensional boundary layer flows,” AIAA Paper, No. 0080 (1993).

  19. A. A. Bakchinov, G. R. Grek, B. G. B. Klingmann, and V. V. Kozlov, “Transition experiments in a boundary layer with embedded streamwise vortices,” Phys. Fluids, 7, 820 (1995).

    Article  ADS  Google Scholar 

  20. Yu. S. Kachanov, V. V. Kozlov, V. Ya. Levchenko, and M. P. Ramazanov, “Nature of the K-breakdown of a laminar boundary layer. Part 1,” Izv. SO AN SSSR, Ser. Tekhn. Nauk, No. 2, 124 (1989).

  21. A. A. Bakchinov, G. R. Grek, M. M. Katasonov, and V. V. Kozlov, “Experimental investigation of the interaction of longitudinal streaky structures with a high-frequency disturbance,” Fluid Dynamics, 33, No. 5, 667 (1998).

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2006, pp. 77–93.

Original Russian Text Copyright © 2006 by Ustinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, M.V. Numerical modeling of laminar-turbulent transition in a boundary layer at a high freestream turbulence level. Fluid Dyn 41, 923–937 (2006). https://doi.org/10.1007/s10697-006-0107-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0107-y

Keywords

Navigation