Skip to main content
Log in

Magnetohydrodynamic interaction in hypersonic air flow past a blunt body

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Kantrowitz, “Survey of physical phenomena occurring in flight at extreme speeds,” in: Conf. on High Speed Aeronaut, N. Y. (1955), p. 335.

  2. A.G. Kulikovskii and G. A. Lyubimov, Magneto-Hydrodynamics, Addison-Wesley, Reading, Mass. (1965).

    Google Scholar 

  3. E. L. Resler and W. R. Sears, “The prospects for magneto-aerodynamics,” J. Aeronaut. Sci, 25, No. 4, 235–245 (1958).

    MathSciNet  Google Scholar 

  4. V. A. Bityurin, V. A. Zeigarnik, and A. L. Kuranov, “On a perspective of MHD technology in aerospace applications,” AIAA Paper, No. 96-2355 (1996).

  5. V. A. Bityurin, V. G. Potebnja, and V. I. Alferov, “On MHD control of hypersonic flows. Planning of experimental studies of MHD effects on bow shock,” in: 34th SEAM, 1997, USA, Mississippi (1997), P.4.4.1.

  6. V. A. Bityurin, A. N. Bocharov, and J. T. Lineberry, “MHD aerospace applications,” in: Proc. Intern Conf. on MHD Power Generation and High Temperature Technologies, Beijing PRC, Vol. 3 (1999), pp. 793–814.

    Google Scholar 

  7. J. T. Lineberry, R. J. Rosa, V. A. Bityurin, A. N. Bocharov, and V. G. Potebnja, “Prospects of MHD flow control for hypersonics,” in: 35th Intersociety Energy Conversion Eng. Conf., AIAA Paper, No. 3057, Las Vegas, NV (2000).

  8. K. A. Hoffmann, H.-M. Damevin, and J.-F. Dietiker, “Numerical simulation of hypersonic MHD flow, ” AIAA Paper, No. 2259 (2000).

  9. J. Poggie and D. Gaitonde, “Magnetic control of hypersonic blunt body flow,” AIAA Paper, No. 0452 (2000).

  10. P. Deb and R. Agarwal, “Numerical simulation of compressible viscous MHD flow with a bi-temperature model for reducing supersonic drag of blunt bodies and scramjet inlets,” AIAA Paper, No. 2419 (2000).

  11. A. B. Vatazhin, V. I. Kopchenov, and O. V. Gus’kov, “Numerical investigation of hypersonic inlets control by magnetic field,” in: The 2nd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Institute of High Temperatures of RAS (IVTAN), Moscow (2000), pp. 56–63.

    Google Scholar 

  12. A. B. Vatazhin, O. V. Gus’kov, M. K. Danilov, and V. I. Kopchenov, “Investigation of the possibility of magnetogasdynamic flow control in hypersonic air intakes,” Aeromekhanika i Gazovaya Dinamika, No. 2, 3–15 (2002).

  13. V. A. Bityurin, A. B. Vatazhin, O. V. Gus’kov, and V. I. Kopchenov, “Hypersonic flow past the spherical nose of a body in the presence of a magnetic field,” Fluid Dynamics, 39, No. 4, 657–666 (2004).

    Article  Google Scholar 

  14. V. A. Bityurin, A. N. Bocharov, A. B. Vatazhin, V. I. Kopchenov et al., “Theoretical and experimental study of MHD interaction effects at circular cylinder in a transversal hypersonic flow,” in: 40th AIAA Aerospace Sciences Meeting, 2002, AIAA Paper, No. 0491, Reno, NV (2002).

  15. V. A. Bityurin, A. N. Bocharov, J. T. Lineberry, and C. Suckomel, “Studies on MHD interaction in hypervelocity ionized air flow over aero-surfaces,” AIAA Paper, No. 1365 (2003).

  16. V. A. Bityurin, A. N. Bocharov, and J. T. Lineberry, “Results of experiments on MHD hypersonic flow control,” 35th AIAA Plasmadynamics and Lasers Conference, 2004, AIAA Paper, No. 2263, Portland, Oregon (2004).

  17. R. N. Gupta, J. M. Yos, R. A. Thompson, K. P. Lee, “A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30.000 K, ” NASARP-1232 (1990).

  18. G. R. S. Sarma, “Physico-chemical modeling in hypersonic flow simulation,” Progr. in Aerospace Sciences, 36, 281–349 (2000).

    Article  Google Scholar 

  19. V. P. Glushko (Ed.), Thermodynamic Properties of Individual Substances, Vol. 1, Book 2 [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  20. A. I. Zubkov, G. A. Tirskii, V. A. Levin, and V. I. Sakharov, “Descent of bodies in the atmosphere the Earth and planets at super-and hypersonic velocities in the presence of physicochemical transformations, heat exchange, and radiation,” Report of the Institute of Mechanics of Moscow State University No. 4507, Moscow (1998).

  21. A. V. Andriatis, S. A. Zhluktov, and I. A. Sokolova, “Transport coefficients of an air mixture with a chemically nonequilibrium composition,” Mat. Modelirovanie, 4, No. 1, 44–64 (1992).

    Google Scholar 

  22. I. A. Sokolova and G. A. Tirskii, “Evaluation and approximation of collision integrals for components of mixtures containing O, N, H, C, F, Na, S, and Si,” Report of the Institute of Mechanics of Moscow State University No. 2857, Moscow (1993).

  23. Yasuhiro Wada, Meng-Sing Liou, “An accurate and robust flux splitting scheme for shock and contact discontinuities,” SIAM Journal Sci. Comput., 18, No. 3, 633–657 (1997).

    Article  MathSciNet  Google Scholar 

  24. Meng-Sing Liou, “A sequel to AUSM: AUSM+,” J. Comp. Phys., 129, No. 2, 364–382 (1996).

    Article  MathSciNet  Google Scholar 

  25. T. J. Barth and D. C. Jesperson, “The design and application of upwind schemes on unstructured meshes,” AIAA Paper, No. 89-0366 (1989).

  26. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gasdynamic Problems [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  27. S. R. Mathur and J. Y. Murthy, “All speed flows on unstructured meshes using a pressure correction approach,” AIAA Paper, No. 99-3365 (1999).

  28. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).

    MATH  Google Scholar 

  29. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vols. 1 and 2, McGraw-Hill, New York (1984).

    MATH  Google Scholar 

  30. A. B. Vatazhin, G. A. Lyubimov, and S. A. Regirer, Magnetohydrodynamic Channel Flows [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  31. V. A. Bityurin and A. N. Bocharov, “MHD flow control in hypersonic flight,” in: 15th Intern. Conf. on MHD Energy Conversion. Moscow, 2005, Vol. 2, 429–433.

    Google Scholar 

  32. V. A. Bityurin, B. M. Burakhanov, S. A. Medin, and V. M. Ponomarev, “Two-dimensional electrical fields in MHD generator channels. Optimum loading circuits,” in: 14th Symp. on Engineering Aspects of MHD (1974), pp. III.2.1–III.2.6.

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2006, pp. 188–203.

Original Russian Text Copyright © 2006 by Bityurin and Bocharov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bityurin, V.A., Bocharov, A. Magnetohydrodynamic interaction in hypersonic air flow past a blunt body. Fluid Dyn 41, 843–856 (2006). https://doi.org/10.1007/s10697-006-0100-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0100-5

Keywords

Navigation