Skip to main content
Log in

Ideal gas flows with separation zones and time-dependent contact discontinuities of complicated shape

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Some examples of flows with separation zones andmovable contact discontinuities obtained as a result of the numerical integration of the time-dependent equations for an ideal gas are presented. The examples concern a steady annular separation zone on the blunt nose of a body in a supersonic flow, periodic shedding of unsteady discontinuities from a cylinder in a steady uniform subsonic flow with a supercritical Mach number, and the complicated deformation of a contact (tangential) discontinuity, namely, the boundaries of a two-dimensional jet, either subsonic or supersonic, flowing into a cocurrent subsonic low-velocity flow. A multiple increase in the difference grid capacity in the numerical integration of the Euler equations indicates the absence of a noticeable scheme viscosity effect in the examples calculated. The inviscid nature of the separation flows obtained is also confirmed by their well-known counterparts constructed in the ideal incompressible fluid approximation. The time-average velocity fields of the two-dimensional jet and the intensity of its sound field are in reasonable agreement with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Shabat, “A scheme of plane fluid flow in the presence of a bottom trench,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 4, 68 (1962).

  2. V. S. Sadovskii, “Constant vorticity region in a plane potential flow,” Uch. Zap. TsAGI, 1, No. 4, 1 (1970).

    MathSciNet  Google Scholar 

  3. V. S. Sadovskii, “Vortex zones in a potential flow with a jump of the Bernoulli constant on its boundary,” Prikl. Mat. Mekh., 35, 771 (1971).

    Google Scholar 

  4. J. Norbury, “A family of steady vortex rings,” J. Fluid Mech., 57, 417 (1973).

    Article  ADS  MATH  Google Scholar 

  5. L. A. Kozhuro, “A family of axisymmetric vortex flows with a Bernoulli constant discontinuity surface, ” Prikl. Mat. Mekh., 45, 88 (1981).

    Google Scholar 

  6. V. S. Sadovskii, “Plane vortex-potential inviscid flows and their application,” Tr. TsAGI, No. 2447 (1989).

  7. R.H. Edwards, “Leading-edge separation from delta wings,” J. Aeronautical Sci., 21, 134 (1954).

    Google Scholar 

  8. C. E. Brown and W.H. Michael Jr., “Effect of leading-edge separation on the lift of a delta wing, ” J. Aeronautical Sci., 21, 690 (1954).

    Google Scholar 

  9. V. I. Kopchenov, A.N. Kraiko, and S.K. Shchipin, “Self-similar problem of separated ideal-fluid flow over an expanding plate,” Fluid Dynamics, 23, No. 5, 693 (1988).

    MathSciNet  Google Scholar 

  10. D. E. Dyer, S. P. Fiddes, and I. H. B. Smith, “Axisymmetric vortex formation from cones at incidence — a simple inviscid model,” Aeronaut. Quart., 33, 293 (1982).

    Google Scholar 

  11. M.G. Goman and A.N. Khrabrov, “Formation of an asymmetric separated flow past slender bodies of revolution at high angles of attack,” Uch. Zap. TsAGI, 15, No. 6, 1 (1984).

    Google Scholar 

  12. A.N. Kraiko and K. S. Reent, “Inviscid nature of the asymmetry of the uniform separated flows past symmetric bodies,” Prikl. Mat. Mekh., 63, 63 (1999); see also: A.N. Kraiko (ed.), Gas Dynamics. Selected Works. Vol. 1 [in Russian], Fizmatlit, Moscow (2001), p. 246.

    MathSciNet  Google Scholar 

  13. V. I. Kopchenov, A.N. Kraiko, and K. E. Lomkov, “Unsteady separated inviscid incompressible flow past an instantaneously accelerated flat plate of finite width,” Uch. Zap. TsAGI, 28, No. 1, 53 (1997).

    Google Scholar 

  14. A.A. Nikol’skii, “On the ’second’ form of ideal fluid flow past a body (study of separated vortex flows),” Dokl. Akad. Nauk SSSR, 116, 193 (1957).

    MathSciNet  Google Scholar 

  15. S. M. Belotserkovskii and M. I. Nisht, Separated and Separationless Ideal Fluid Flow past Thin Wings [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  16. A. N. Kraiko, D. E. Pudovikov, K. S. P’yankov and N. I. Tillyaeva, “Axisymmetric noses of a given aspect ratio, optimal or near-optimal for the wave drag,” Prikl. Mat. Mekh., 67, 795 (2003).

    MathSciNet  Google Scholar 

  17. A.N. Kraiko and K. S. P’yankov, “Designing supercritical airfoils and nacelles in a transonic inviscid gas flow,” Zh. Vychisl. Mat. Mat. Fiz., 40, 1890 (2000); see also: A.N. Kraiko, A. B. Vatazhin, and A.N. Sekundov (eds.), Gas Dynamics. Selected Works. Vol. 2 [in Russian], Fizmatlit, Moscow (2001), p. 250.

    MathSciNet  Google Scholar 

  18. S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G. P. Prokopov, Numerical Solution of Multi-Dimensional Problems of Gasdynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  19. V. P. Kolgan, “Using the principle of minimum values of a derivative for constructing difference schemes for calculating discontinuous gasdynamic solutions,” Uch. Zap. TsAGI, 3, No. 6, 68 (1972).

    Google Scholar 

  20. A.V. Rodionov, “A monotonic second-order scheme for calculating nonequilibrium flows with discontinuity capturing,” Zh. Vychisl. Mat. Mat. Fiz., 27, 585 (1987).

    MathSciNet  Google Scholar 

  21. A.V. Rodionov, “Increasing the approximation order of the Godunov scheme,” Zh. Vychisl. Mat. Mat. Fiz., 27, 1853 (1987).

    MathSciNet  Google Scholar 

  22. N. I. Tillyaeva, “Generalization of the modified Godunov scheme to arbitrary irregular grids,” Uch. Zap. TsAGI, 17, No. 2, 18 (1986); see also: A.N. Kraiko, A.B. Vatazhin, and A.N. Sekundov (eds.), Gas Dynamics. Selected Works. Vol. 2 [in Russian], Fizmatlit, Moscow (2001), p. 201.

    Google Scholar 

  23. A. N. Kraiko, V. E. Makarov, and N. I. Tillyaeva, “Numerical construction of shock fronts,” Zh. Vychisl. Mat. Mat. Fiz., 20, 716 (1980); see also: A.N. Kraiko, A.B. Vatazhin, and A.N. Sekundov (eds.), Gas Dynamics. Selected Works. Vol. 2 [in Russian], Fizmatlit, Moscow (2001), p. 169.

    Google Scholar 

  24. É.G. Shifrin, “Compression shock in the transonic flow around a convex corner,” Fluid Dynamics, 9, No. 5, 712 (1974).

    Article  Google Scholar 

  25. V. S. Boichenko and Yu.B. Lifshits, “Transonic flow around a convex corner,” Uch. Zap. TsAGI, 7, No. 2, 8 (1976).

    Google Scholar 

  26. A. I. Esin and A. I. Chernov, “On the shock in flow around a convex corner,” Prikl. Mat. Mekh., 41, 292 (1977).

    Google Scholar 

  27. A. I. Esin and A. I. Chernov, “On the local flow around a convex corner,” in: Aerodynamics. Collection of Papers. Issue 6 (9) [in Russian], Saratov Univ. Press, Saratov (1978), p. 17.

    Google Scholar 

  28. V. L. Grigorenko and A.N. Kraiko, “Internal shocks in supersonic inviscid flow past wedge-plate and conecylinder bodies,” Prikl. Mat. Mekh., 50, 91 (1986).

    Google Scholar 

  29. G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  30. A. B. Bogod, B. S. Zamfort, M.Ya. Ivanov, and A.N. Kraiko, “Use of the time-establishment processwhen solving problems relating to the steady flow of gas around a cascade of profiles,” Fluid Dynamics, 9, No. 4, 597 (1974).

    Article  Google Scholar 

  31. N. L. Efremov, A.N. Kraiko, and K. S. P’yankov, “Axisymmetric minimum-drag nose with given dimensions and volume,” Prikl. Mat. Mekh., 69, 723 (2005).

    MATH  Google Scholar 

  32. B. E. Edney, “Anomalous heat transfer and pressure distribution on blunt bodies at hypersonic speeds in the presence of an impinging shock,” The Aeronaut. Res. Institute of Sweden, Report 115, Stockholm (1968).

  33. J. C. Tannenhill, T. L. Holst, and J.V. Rakich, “Numerical computation of two-dimensional viscous blunt body flows with an impinging shock,” AIAA J., 14, 204 (1976).

    ADS  Google Scholar 

  34. J. C. Tannenhill, T. L. Holst, J.V. Rakich, and J.W. Keyes, “Comparison of two-dimensional shock impingement computation with experiment,” AIAA J., 14, 539 (1976).

    ADS  Google Scholar 

  35. J. C. Tannenhill, Y. C. Vigneron, and J.V. Rakich, “Numerical solution of two-dimensional turbulent blunt body flows with an impinging shock,” AIAA J., 17, 1289 (1979).

    Article  ADS  Google Scholar 

  36. A. N. Ganzhelo, A.N. Kraiko, K. S. P’yankov, and N. I. Tillyaeva, “Increasing the accuracy of the solution of gasdynamic problems,” in: Modern Problems of Aeromechanics [in Russian], Mashinostroenie, Moscow (1987), p. 87.

    Google Scholar 

  37. V. I. Bogdanov, A. N. Kraiko, K. S. P’yankov, and N. I. Tillyaeva, “Contouring an asymmetric nozzle with timedependent stagnation parameters of the issuing gas andminimum throat dimensions,” Aeromekh. Gas. Din., No. 3, 43 (2002).

  38. A. N. Kraiko, K. S. Pyankov, and N. I. Tillyaeva, “Optimal nozzle design when time-changing its throat size and pressure ratio,” in: XVI Int. Symp. on Air Breathing Engines (ISABE). Cleveland, Oh, USA, 2003, ISABE-2003-1117.

  39. M. Van Dyke, An Album of Fluid Flows, The Parabolic Press, Stanford (1982).

    Google Scholar 

  40. H.H. Korst, “A theory for base pressure in transonic and supersonic flow,” J. Appl. Mech., 23, 593 (1956).

    MathSciNet  MATH  Google Scholar 

  41. R.K. Tagirov, “Calculation of the base pressure and the parameters of the separated flow behind a plane step in sonic and supersonic flow,” Tr. TsIAM, No. 538 (1972).

  42. V.Ya. Neiland, V.V. Bogolepov, G.N. Dudin, and I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Flows [in Russian], Fizmatlit, Moscow (2004)

    Google Scholar 

  43. L.D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, London (1959).

    Google Scholar 

  44. W. Blumen, “Jet flow instability of an inviscid compressible fluid,” J. Fluid Mech., 46, 737 (1971).

    Article  ADS  MATH  Google Scholar 

  45. K. S. P’yankov, “Modeling jet noise and determining its acoustic characteristics on the basis of the time-dependent Euler equations,” in: Proceedings of the Fourth Intern. Seminar “Models and Methods of Aerodynamics”, Evpatoria, June 2004 [in Russian], Moscow (2004), p. 101.

  46. J. E. Ffocs Williams and D. L. Hawkings, “Sound generated by turbulence and surfaces in arbitrary motion,” Phil. Trans. Royal Soc., Ser. A, 264, No. 1151, 321 (1969).

    ADS  Google Scholar 

  47. G. N. Abramovich, Applied Gas Dynamics. Part 1 [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  48. M. J. Lighthill, “On sound generated aerodynamically. Part I. General theory,” Proc. Royal Soc., Ser. A, 211, No. 1107, 564 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  49. M. J. Lighthill, “On sound generated aerodynamically. Part II. Turbulence as a source of sound, ” Proc. Royal Soc., Ser. A, 222, No. 1148, 1 (1954).

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2006, pp. 41–54.

Original Russian Text Copyright © 2006 by Kraiko and P’yankov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraiko, A.N., P’yankov, K.S. Ideal gas flows with separation zones and time-dependent contact discontinuities of complicated shape. Fluid Dyn 41, 708–724 (2006). https://doi.org/10.1007/s10697-006-0090-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0090-3

Keywords

Navigation