Skip to main content

Model representations of the interaction between the solar wind and the supersonic interstellar medium flow. prediction and interpretation of experimental data


The planning and conducting of physical experiments requires the development of theoretical models capable either of predicting possible experimental data or explaining those already obtained. The processes taking place in the physical world can be understood only in terms of the close interaction between theory and experiment. Developing any quantitative or qualitative model of a physical phenomenon requires a mathematical apparatus, on the basis of which such models can be constructed. The branch of theoretical science using the methods of magnetohydrodynamics and hydroaeromechanics for studying space physics problems is usually called cosmic gasdynamics; it is mostly used in developing models of physical phenomena occurring under space conditions.

In order to emphasize the importance of cosmic gasdynamics in the development of astrophysics and space research, we will present several examples of models constructed by aerodynamicists. These models not only played an important role in qualitative predictions but are still being developed due to the need for the quantitative interpretation of the experimental data.

The solar corona was long thought to be a formation in a state of gravitational equilibrium (Chapman model). However, it turned out that the pressure at infinity obtained on the basis of this equilibrium solution is considerably greater than the estimated pressure in the interstellar gas surrounding the solar corona. In [1] it was concluded that in this case the solar corona gas must expand and a solution describing this expansion was obtained by invoking the steady-state hydrodynamics equations in the spherically-symmetric approximation. The solution of these equations led to the theoretical prediction of the solar wind, a radial flow of fully ionized hydrogen plasma issuing from the solar corona at a low subsonic velocity but already hypersonic at the Earth’s orbit. Subsonic-to-supersonic transition is ensured by solar gravitation which in this case plays the role of a convergent-divergent nozzle. Within a year, the theoretical prediction of the solar wind [1] was confirmed by its experimental detection [2] onboard the Soviet spacecraft Luna-2. It turned out that at the Earth’s orbit the mean velocity of the solar wind V E ≈ 450 km·s−1, the mean proton temperature T E ≈ 6 · 104 K (the electron temperature is somewhat higher), and the mean concentration of protons (and electrons) n E ≈ 10 cm−3.

The first hydrodynamic model of the supersonic solar-wind flow past the Earth’s magnetosphere [3] was only qualitative, since it considered a flow past a plane magnetic dipole in the approximation of a thin layer between the bow shock and an “obstacle” embedded in the flow. However, it was constructed before the actual discovery of the solar wind and provided further important impetus to the development of models of the supersonic solar wind flow past planets with a detached shock.

One more example is furnished by the gasdynamicmodel of the solar wind flow past cometary atmospheres, first suggested in

In this work, a model of the interaction between the supersonic solar wind and the supersonic flow of the local, i.e., surrounding the Sun, interstellar medium is considered; it was first suggested in [6] in a much simplified formulation. This model has been actively developed in connection with the flights of the spacecraft Voyager 1 and 2, Ulysses, Hubble Space Telescope, SOHO, and others, exploring the outer regions of the solar system.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. Parker, “Dynamics of the interplanetary gas and magnetic fields,” Astrophys. J., 128, 664 (1958).

    Article  ADS  Google Scholar 

  2. 2.

    K. I. Gringauz, V.V. Bezrukikh, V.D. Ozerov, and R. E. Rybchinskii, “Investigation of the interplanetary ionized gas, energetic electrons, and corpuscular solar radiation using three-electrode charged-particle traps onboard the second Soviet space rocket,” Dokl. Akad. Nauk SSSR, 131, 1301 (1960).

    Google Scholar 

  3. 3.

    V.N. Zhigulev and E.A. Romishevskii, “Interaction of conductingmedium flows with the Earth’s magnetic field,” Dokl. Akad. Nauk SSSR, 127, 1001 (1959).

    Google Scholar 

  4. 4.

    L. Biermamm, B. Brosowski, and H. Schmidt, “The interaction of the solar wind with a comet,” Solar Physics, 1, 254 (1967).

    Article  ADS  Google Scholar 

  5. 5.

    V. B. Baranov and M.G. Lebedev, “Self-consistent gasdynamic model of the solar wind flow past a cometary ionosphere with account for the ‘mass-loading’ effect,” Pisma Astron. Zh., 12, 551 (1986).

    ADS  Google Scholar 

  6. 6.

    V. B. Baranov, K.V. Krasnobaev, and A.G. Kulikovskii, “Model of the interaction between the solar wind and the interstellar medium,” Dokl. Akad. Nauk SSSR, 194, 41 (1970).

    Google Scholar 

  7. 7.

    G. G. Chernyi, Introduction to Hypersonic Flow Theory, Acad. Press, New York (1966).

    Google Scholar 

  8. 8.

    J. L. Bertaux and J. Blamont, “Evidence for a source of an extraterrestrial hydrogen Lyman-α emission: The interstellar wind,” Astron. Astrophys., 11, 200 (1971).

    ADS  Google Scholar 

  9. 9.

    G. Thomas and R. Krassa, “OGO-5 measurements of the Lyman-α sky background,” Astron. Astrophys., 11, 218 (1971).

    ADS  Google Scholar 

  10. 10.

    C. Weller and R. Meier, “Observations of helium in the interplanetary/interstellar wind: The solar wake.” Astrophys. J., 193, 471 (1974).

    Article  ADS  Google Scholar 

  11. 11.

    R. Lallement and P. Bertin, “Northern-hemisphere observations of nearly interstellar gas: possible detection of the local cloud,” Astron. Astrophys., 266, 479 (1992).

    ADS  Google Scholar 

  12. 12.

    M. Wallis, “Local interstellar medium,” Nature, 254, No. 5497, 202 (1975).

    Article  ADS  Google Scholar 

  13. 13.

    V. B. Baranov, M.G. Lebedev, and M. S. Ruderman, “Structure of the region of solar wind — interstellar medium interaction and its influence on H atoms penetrating the Solar System,” Astrophys. Space Sci., 66, 441 (1979).

    Article  ADS  Google Scholar 

  14. 14.

    H.W. Ripken and H.-J. Fahr, “Modification of the local interstellar gas properties in the heliospheric interface,” Astron. Astrophys., 122, 181 (1983).

    ADS  Google Scholar 

  15. 15.

    J. L. Bertaux, R. Lallement, V.G. Kurt, and E.N. Mironova, “Characteristics of the local interstellar hydrogen determined from Prognoz-5 and 6 interplanetary Lyman-alpha line profile measurements with a hydrogen absorption cell,” Astron. Astrophys., 150, 1 (1985).

    ADS  Google Scholar 

  16. 16.

    V. B. Baranov, “Gasdynamics of the solar wind interaction with the interstellar medium,” Space Sci. Rev., 52, 89 (1990).

    Article  ADS  Google Scholar 

  17. 17.

    V. B. Baranov, “Gasdynamic model of the local interstellar medium flow past the solar wind. Connection with the experimental data,” Usp. Mekh., 1, No. 1, 3 (2002).

    Google Scholar 

  18. 18.

    E. Parker, “The stellar wind regions,” Astrophys. J., 134, 20 (1961).

    Article  ADS  Google Scholar 

  19. 19.

    V. B. Baranov, M.K. Ermakov, and M.G. Lebedev, “Three-component gas-dynamic model of the interaction of the solar wind with the interstellar medium,” Fluid Dynamics, 17, No. 5, 754 (1982).

    Article  Google Scholar 

  20. 20.

    V. B. Baranov and Yu.G. Malama, “Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem,” J. Geophys. Res., 98, No. A9, 15157 (1993).

    Google Scholar 

  21. 21.

    Yu.G. Malama, “Monte Carlo simulation of neutral atom trajectories in the solar system,” Astrophys. Space Sci., 176, 21 (1991).

    Article  ADS  Google Scholar 

  22. 22.

    V. B. Baranov, V.V. Izmodenov, and Yu.G. Malama, “On the distribution function of H atoms in the problem of the solar wind interaction with the local interstellar medium,” J. Geophys. Res., 103, No. A5, 9575 (1998).

    Article  ADS  Google Scholar 

  23. 23.

    A.V. Myasnikov, D. B. Alexashov, V.V. Izmodenov, and S.V. Chalov, “Self-consistent model of the solar wind interaction with three-component circumsolar interstellar cloud: Mutual influence of thermal plasma, galactic cosmic rays, and H atoms,” J. Geophys. Res., 105, No. A3, 5167 (2000).

    Article  ADS  Google Scholar 

  24. 24.

    V. Izmodenov, Yu. Malama, G. Gloeckler, and J. Geiss, “Effects of interstellar and solar wind ionized helium on the interaction of the solar wind with the local interstellar medium,” Astrophys. J. Letters, 594, L59 (2003).

    Article  ADS  Google Scholar 

  25. 25.

    S.V. Chalov and H.-J. Fahr, “Phase space diffusion and anisotropic pick-up ion distributions in the solar wind: an injection study,” Astron. Astrophys., 335, 746 (1998).

    ADS  Google Scholar 

  26. 26.

    D. B. Alexashov, S.V. Chalov, A.V. Myasnikov, V.V. Izmodenov, and R. Kallenbach, “The dynamical role of the anomalous cosmic rays in the outer heliosphere,” Astron. Astrophys., 420, 729 (2004).

    Article  ADS  Google Scholar 

  27. 27.

    D. B. Alexashov, V. B. Baranov, E.V. Barskii, and A.V. Myasnikov, “Axisymmetric magnetohydrodynamic model of the interaction between the solar wind and the interstellar medium,” Pisma Astron. Zh., 26, 862 (2000).

    Google Scholar 

  28. 28.

    V.V. Izmodenov, D. B. Alexashov, and A.V. Myasnikov, “Direction of the interstellar H atom inflow in the heliosphere: Role of the interstellar magnetic field,” Astron. Astrophys., 437, L35 (2005).

    Article  ADS  Google Scholar 

  29. 29.

    R. Lallement, E. Quémerais, J. L. Bertaux, S. Ferron, D. Kotroumpa, and R. Pellinen, “ Deflection of the interstellar neutral hydrogen flow across the heliospheric interface,” Science, 307, No. 5714, 1447 (2005).

    Article  ADS  Google Scholar 

  30. 30.

    P. R. Gazis, “Solar cycle variation in the heliosphere,” Rev. Geophys., 34, 379 (1996).

    Article  ADS  Google Scholar 

  31. 31.

    V. B. Baranov and N.A. Zaitsev, “On the problem of the heliospheric interface response to the cycles of the solar activity,” Geophys. Res. Lett., 25, 4051 (1998).

    Article  ADS  Google Scholar 

  32. 32.

    C. Wang and J. Belcher, “The heliospheric boundary response to large-scale solar wind fluctuations: A gasdynamic model with pickup ions,” J. Geophys. Res., 104, No. A1, 549 (1999).

    Article  ADS  Google Scholar 

  33. 33.

    V.V. Izmodenov and Yu.G. Malama, “Variations of interstellar H atom parameters in the outer heliosphere: solar cycle effects,” Adv. Space Res., 34, 74 (2004).

    Article  ADS  Google Scholar 

  34. 34.

    V.V. Izmodenov, Yu.G. Malama, and M. S. Ruderman, “Solar cycle influence on the interaction of the solar wind with Local Interstellar Cloud,” Astron. Astrophys., 429, 1069 (2005).

    Article  ADS  Google Scholar 

  35. 35.

    V.V. Izmodenov and D. B. Alexashov, “Model of the tail region of the heliospheric interface,” Pisma Astron. Zh., 29, 69 (2003).

    Google Scholar 

  36. 36.

    Yu.G. Malama, V.V. Izmodenov, and S.V. Chalov, “Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma,” Astron. Astrophys., 445, 693 (2006).

    Article  ADS  Google Scholar 

  37. 37.

    G. P. Zank, H. L. Pauls, L. L. Williams, and D. T. Hall, “Interaction of the solar wind with the local interstellar medium: a multifluid approach,” J. Geophys. Res., 101, No. A10, 21639 (1996).

    Google Scholar 

  38. 38.

    D. B. Alexashov and V.V. Izmodenov, “Kinetic vs multi-fluid models of the heliospheric interface: a comparison,” Astron. Astrophys., 439, 1171 (2005).

    Article  ADS  Google Scholar 

  39. 39.

    V.V. Izmodenov, M.A. Gruntman, and Yu.G. Malama, “Interstellar hydrogen atom distribution function in the outer heliosphere,” J. Geophys. Res., 106, 10681 (2001).

    Google Scholar 

  40. 40.

    V. B. Baranov, M.G. Lebedev, and Yu.G. Malama, “The influence of the interface between heliosphere and the local interstellar medium on the penetration of the H atoms to the solar system,” Astrophys. J., 375, 347 (1991).

    Article  ADS  Google Scholar 

  41. 41.

    J. L. Linsky and B. E. Wood, “The α Centauri line of sight: D/H ratio, physical properties of local interstellar gas and measurements of heated hydrogen at heliospheric interface,” Astrophys. J., 463, 254 (1996).

    Article  ADS  Google Scholar 

  42. 42.

    J. L. Linsky, “GHRS observations of the LISM,” Space Sci. Rev., 78, 157 (1996).

    Article  ADS  Google Scholar 

  43. 43.

    B. E. Wood, J. L. Linsky, and G. P. Zank, “Heliospheric, astrospheric, and interstellar Ly-α absorption toward 36Opiuchi,” Astrophys. J., 537, 304 (2000).

    Article  ADS  Google Scholar 

  44. 44.

    V.V. Izmodenov, R. Lallement, and Yu.G. Malama, “Heliospheric and astrospheric hydrogen absorption toward Sirius: No need for interstellar hot gas,” Astron. Astrophys., 342, L13 (1999).

    ADS  Google Scholar 

  45. 45.

    B. Wolff, D. Koester, and R. Lallement, “Evidence for an ionization gradient in the local interstellar medium: EUVE observations of white dwarfs,” Astron. Astrophys., 346, 969 (1999).

    ADS  Google Scholar 

  46. 46.

    M. Witte, “Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument,” Astron. Astrophys., 426, 835 (2004).

    Article  ADS  Google Scholar 

  47. 47.

    V.V. Izmodenov, Yu.G. Malama, G. Gloeckler, and J. Geiss, “Filtration of interstellar H, O, N atoms through the heliospheric interface: Inferences on local interstellar abundances of the elements,” Astron. Astrophys., 414, L29 (2004).

    Article  ADS  Google Scholar 

  48. 48.

    J. L. Linsky, A. Dipas, B. E. Wood, et al., “Deuterium and the local interstellar medium properties for the Procyon and Capella lines of sight,” Astrophys. J., 476, 366 (1995).

    Google Scholar 

Download references


Additional information


Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2006, pp. 19–40.

Original Russian Text Copyright © 2006 by Baranov and Izmodenov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baranov, V.B., Izmodenov, V. Model representations of the interaction between the solar wind and the supersonic interstellar medium flow. prediction and interpretation of experimental data. Fluid Dyn 41, 689–707 (2006).

Download citation


  • solar wind
  • local interstellar medium
  • shock wave
  • heliopause
  • kinetic-gasdynamic model
  • resonance charge-exchange
  • Monte Carlo method
  • heliospheric interface