Skip to main content
Log in

On the possible formation of a vortex flow in a supersonic inlet with three-dimensional compression

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The structure of the flow in an inlet with three-dimensional compression and an adjoining channel of rectangular cross-section is experimentally investigated for the external flow parameters M = 4 and Re ≈ 52 · 106 1/m. The phenomenon of vortex generation in the air-intake and its breakdown at the channel entry, where it encounters an elevated pressure gradient, is studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Kurziner, Jet Engines for High Supersonic Flight Velocities [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  2. “Ground testing of the Aerojet rocket-ramjet engine ’stratojet’”, Aviation Week, 151, No. 1, 57 (1999).

  3. H. Taguchi, M. Maita, N. Yatsuyanagi, and T. Yamanaka, “Airbreather/rocket combined propulsion system research for Japanese SSTO spaceplane,” AIAA Paper, No. 4811 (1999).

  4. V. G. Gurylev, M. Yu. Korchinskaya, and A. F. Chevagin, “Flow structure and maximum static pressures at the entry and throat of plane air-intakes at high supersonic velocities,” Uch. Zap. TsAGI, 16, No. 1, 46 (1985).

    Google Scholar 

  5. A. F. Chevagin, V. A. Vinogradov, S. V. Evdokimov, and V. A. Stepanov, “Distinctive features of the internal characteristics of three-dimensional hypersonic air-intakes,” Tekhn. Vozd. Flota, No. 4–6, 33 (1992).

  6. A. M. Kharitonov, A. V. Lokotko, A. V. Tchernyshyev, V. I. Kopchenov, K. E. Lomkov, and A. S. Rudakov, “Mixing processes of supersonic flows in a model duct of a rocket scramjet engine,” AIAA Paper, No. 0559 (2000).

  7. V. A. Bashkin, I. V. Egorov, and D. V. Ivanov, “Mach number effect on the flowfield and the aerodynamic characteristics of an unadjustable hypersonic air-intake at Re = 106,” Uch. Zap. TsAGI, 33, No. 1–2, 15 (2002).

    MathSciNet  Google Scholar 

  8. M. A. Goldfeld, A. V. Starov, and V. A. Vinogradov, “Experimental investigations of a three-dimensional air-intake of a rocket-scramjet engine module,” Teplofiz. Aeromekh., 7, 489 (2000).

    Google Scholar 

  9. V. V. Zatoloka, A. K. Ivanyushkin, and A. V. Nikolaev, “Interference of vortices with shocks in an air-intake. Vortex breakdown,” Uch. Zap. TsAGI, 6, No. 2, 134 (1975).

    Google Scholar 

  10. V. Ya. Borovoy, T. V. Kubyshina, A. S. Skuratov, and L. V. Yakovleva, “Vortex in a supersonic flow and its influence on blunt body flow and heat transfer,” Fluid Dynamics, 35, No. 5, 682 (2000).

    Article  Google Scholar 

  11. M. K. Smart, I. M. Kalkhoran, and A. Betti, “Interaction of supersonicwing tip vortices with a normal shock, AIAA J., 34, 1855 (1996).

    ADS  Google Scholar 

  12. G. F. Glotov, “Interference of a vortex filament with shocks in a free flow and nonisobaric jets, ” Uch. Zap. TsAGI, 20, No. 5, 21 (1989).

    Google Scholar 

  13. E. Krause, “Shock induced vortex breakdown,” in: Proc. Xth Intern. Conf. Methods of Aerophysical Research. Part 2, Novosibirsk (2000), p. 109.

  14. M. K. Smart and I. M. Kalkhoran, “Effect of shock strength on oblique shock wave —vortex interaction,” AIAA J., 33, 2137 (1995).

    ADS  Google Scholar 

  15. V. N. Zudov and E. A. Pimonov, “Interaction between a longitudinal vortex and an oblique shock, ” Zh. Prikl. Mekh. Tekhn. Fiz., 44, No. 4, 10 (2003).

    MATH  MathSciNet  Google Scholar 

  16. L. F. F. Da Silva, V. Sabel’nikov, and B. Deshaies, “Stabilization of supersonic combustion by a free recirculating bubble: A numerical study,” AIAA J., 35, 1782 (1997).

    MATH  Google Scholar 

  17. A. N. Volkova and N. N. Novichkov, “Concepts of promising reusable air-based aeroassisted orbiters, ” TsAGI Review, No. 686 (1989).

  18. M. S. Lapin, E. V. Malyutina, and Yu. Ya. Shilov, “Problems of development of aircraft with hypersonic cruise velocities,” TsAGI Technical Information, No. 9, 7 (1979).

  19. A. I. Maksimov and A. A. Pavlov, “Development of the “laser knife” technique for visualizing flows in supersonic wind tunnels,” Uch. Zap. TsAGI, 17, No. 5, 39 (1986).

    Google Scholar 

  20. A. I. Maksimov, “A photorecording device,” Bull. Izobret., No. 25, 17 (1988).

    Google Scholar 

  21. G. V. Bazhenova, L. G. Gvozdeva, Yu. P. Lagutov, et al., Time-Dependent Interaction of Shock and Detonation Waves in Gases [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  22. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics. Vol. 2 [in Russian], Fizmatgiz, Moscow (1963).

    MATH  Google Scholar 

  23. A. Nedungadi and M. J. Lewis, “Computational study of the flowfields associated with oblique shock/vortex interaction,” AIAA J., 34, 2545 (1996).

    Article  ADS  Google Scholar 

  24. S. Leibovich, “Vortex stability and breakdown: survey and extension,” AIAA J., 22, 1192 (1984).

    Google Scholar 

  25. P. K. Chang, Separation of Flow. Vol. 2, Pergamon Press, Oxford (1970).

    MATH  Google Scholar 

  26. L. G. Loytsianskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford (1966).

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, 2006, pp. 182–194.

Original Russian Text Copyright © 2006 by Lokotko and Kharitonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokotko, A.V., Kharitonov, A.M. On the possible formation of a vortex flow in a supersonic inlet with three-dimensional compression. Fluid Dyn 41, 649–660 (2006). https://doi.org/10.1007/s10697-006-0084-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0084-1

Keywords

Navigation