Skip to main content
Log in

Modeling of the turbulent motion of particles in a vertical channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of modeling of the statistical parameters of a turbulent particle motion in a vertical plane channel are presented. The model is based on a kinetic equation for the particle velocity probability density function. The results are compared with direct numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Pialat, O. Simonin, and P. Villedieu, “Direct coupling between Lagrangian and Eulerian approaches in turbulent gas-particle flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77078._Houston, USA (2005).

  2. M. Armenio, U. Piomelli, and V. Fiorotto, “Effect of subgrid scales on particle motion,” Phys Fluids, 11, No. 10, 3030–3042 (1999).

    Article  ADS  Google Scholar 

  3. M. Boivin, O. Simonin, and K. D. Squires, “On the prediction of gas-solid flows with two-way coupling using large-eddy simulation,” Phys. Fluids, 12, No. 8, 2080–2090 (2000).

    Article  ADS  Google Scholar 

  4. Y. Yamamoto, M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji, “Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions,” J. Fluid Mech., 442, 303–334 (2001).

    Article  MATH  ADS  Google Scholar 

  5. J. G. M. Kuerten and A. W. Vreman, “Can turbophoresis be predicted by large-eddy simulation?,” Phys. Fluids, 17, No. 1, 011701-1-011701-4 (2005).

    Google Scholar 

  6. O. A. Druzhinin and S. E. Elghobashi, “Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation,” Phys. Fluids, 10, No. 3, 685–697 (1998).

    Article  ADS  Google Scholar 

  7. J. Ferry and S. Balachandar, “A fast Eulerian method for disperse two-phase flow,” Int. J. Multiphase Flow, 27, 1199–1226 (2001).

    Article  MATH  Google Scholar 

  8. R. V. R. Pandya and F. Mashayek, “Two-fluid large-eddy simulation approach for particle-laden turbulent flows,” Int. J. Heat Mass Transfer, 45, 4753–4759 (2002).

    Article  MATH  Google Scholar 

  9. P. Février, O. Simonin, and K. D. Squires, “Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and spatially-uncorrelated random distribution: theoretical formalism and numerical study,” J. Fluid Mech., 533, 1–46 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. M. Moreau, B. Bedat, and O. Simonin, “From Euler-Lagrange to Euler-Euler large-eddy simulation approaches for gas-particle turbulent flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77306. Houston, USA (2005).

  11. Y. A. Buevich, “Statistical hydromechanics of disperse systems. P.1. Physical background and general equations,” J. Fluid Mech., 49, No. 3, 489–507 (1971).

    Article  ADS  Google Scholar 

  12. I. V. Derevich and L. I. Zaichik, “Equation for the probability density of the particle velocity and temperature in a turbulent flow modeled by a Gaussian random field,” Prikl. Matem. Mekh., 54, No. 5, 767–774 (1990).

    MATH  Google Scholar 

  13. M. W. Reeks, “On a kinetic equation for the transport of particles in turbulent flows,” Phys. Fluids A, 3, No. 3, 446–456 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M. W. Reeks, “On the continuum equation for dispersed particles in nonuniform flows,” Phys. Fluids A, 4, No. 6, 1290–1303 (1992).

    Article  MATH  ADS  Google Scholar 

  15. D. C. Swailes and K.F.F. Darbyshire, “A generalized Fokker-Planck equation for particle transport in random media,” Physica A, 242, 38–48 (1997).

    Article  ADS  Google Scholar 

  16. L. I. Zaichik, “Modeling of particle motion in a nonuniform turbulent flow on the basis of an equation for the probability density function,” Prikl. Matem. Mekh., 61, No. 1, 132–138 (1997).

    MathSciNet  Google Scholar 

  17. K. E. Hyland, S. McKee, and M. W. Reeks, “Deviation of a PDF kinetic equation for the transport of particles in turbulent flow,” J. Phys. A: Math. Gen., 32, 6169–6190 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. J. Pozorski and J.-P. Minier, “Probability density function modeling of dispersed two-phase turbulent flows,” Phys. Rev. E, 59, No. 1, 855–863 (1999).

    Article  ADS  Google Scholar 

  19. I. V. Derevich, “Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development,” Int. J. Heat Mass Transfer, 43, No. 19, 3709–3723 (2000).

    Article  MATH  Google Scholar 

  20. R.V.R. Pandya and F. Mashyek, “Non-isothermal dispersed phase of particles in turbulent flow,” J. Fluid Mech., 475, 205–245 (2003).

    Article  MATH  ADS  Google Scholar 

  21. V. M. Alipchenkov and L. I. Zaichik, “Statistical model of particle motion and dispersion in an anisotropic turbulent flow,” Fluid Dyn., 39, No. 5, 735–747 (2004).

    Article  Google Scholar 

  22. L. I. Zaichik, “A statistical model of particle transport and heat transfer in turbulent shear flow, ” Phys. Fluids, 11, No. 6, 1521–1534 (1999).

    Article  ADS  Google Scholar 

  23. D.W.I. Rouson and J.K. Eaton, “Direct numerical simulation of particles interacting with a turbulent channel flow,” in: Proc. 7th Workshop on Two-Phase Predictions. Erlangen, Germany, (1994).

  24. Q. Wang and K. D. Squires, “Large-eddy simulation of particle-laden turbulent channel flow,” Phys. Fluids, 8, No. 5, 1207–1223 (1996).

    Article  MATH  ADS  Google Scholar 

  25. K. Fukugata, S. Zahrai, and F.H. Bark, “Force balance in a turbulent particulate flow,” Int. J. Multiphase Flow, 24, 867–887 (1998).

    Article  Google Scholar 

  26. M. Picciotto, C. Marchioli, M. W. Reeks, and A. Soldati, “Statistics of velocity and preferential concentration of micro-particles in boundary layer turbulence,” Nuclear Eng. Design, 235, 1239–1249 (2005).

    Article  Google Scholar 

  27. M.W. Reeks, “The transport of disperse particles in inhomogeneous turbulence,” J. Aerosol Sci., 14, No. 6, 729–739 (1983).

    Article  Google Scholar 

  28. C. Marchioli and A. Soldati, “Mechanisms for particle transport and segregation in a turbulent boundary layer,” J. Fluid Mech., 468, 283–315 (2002).

    Article  MATH  ADS  Google Scholar 

  29. J. Choi, K. Yeo, and C. Lee, “Lagrangian statistics in turbulent channel flow,” Phys. Fluids, 16, 779–793 (2004).

    Article  ADS  Google Scholar 

  30. B. Oesterlé and L. I. Zaichik, “On Lagrangian time scales and particle dispersionmodeling in equilibrium turbulent shear flows,” Phys. Fluids, 16, No. 9, 3374–3384 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  31. G. T. Csanady, “Turbulent diffusion of heavy-particles in the atmosphere,” J. Atmos. Sci., 20, 201–208 (1963).

    Article  ADS  Google Scholar 

  32. L.-P. Wang and D. E. Stock, “Dispersion of heavy particles in turbulent motion,” J. Atmos. Sci., 50, No. 13, 1897–1913 (1993).

    Article  ADS  Google Scholar 

  33. M. Sakiz and O. Simonin, “Development and validation of continuum particle-wall boundary conditions using Lagrangian simulation of a vertical gas-solid channel flow,” in: Proc. 7th Int. Symp. Gas-Solid Flows. ASME/FED, Paper No. 7898 (1999).

  34. V. M. Alipchenkov, L. I. Zaichik, and O. Simonin, “Comparison of two approaches to constructing the boundary conditions for continuum equations of particle motion in a turbulent flow,” Teplofiz. Vys. Temp., 39, No. 1, 108–114 (2001).

    Google Scholar 

  35. B. L. Sawfold, “Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, ” Phys. Fluids A, 3, 1577–1586 (1991).

    Article  ADS  Google Scholar 

  36. L. I. Zaichik, O. Simonin, and V. M. Alipchenkov, “Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence,” Phys. Fluids, 15, No. 10, 2995–3005 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  37. L. I. Zaichik and V. M. Alipchenkov, “Time of interaction of colliding particles with turbulent eddies,” Teplofiz. Aeromekh., 6, No. 4, 529-537 (1999).

    Google Scholar 

  38. S. Corrsin, “Progress report on some turbulent diffusion research,” in: Advances in Geophysics. V.6, Acad. Press, New York (1959), pp. 161–184.

    Google Scholar 

  39. G. A. Kallio and M. W. Reeks, “A numerical simulation of particle deposition in turbulent boundary layer,” Int. J. Multiphase Flow, 15, No. 3, 433–446 (1989).

    Article  Google Scholar 

  40. K. Fukagata, S. Zahrai, F. H. Bark, and S. Kondo, “Influences of the near-wall drag correction in a Lagrangian simulation of particulate turbulent channel flow,” in: Proc. 1st Int. Symp. Turbulence and Shear Flow. 1999. Santa Barbara, USA, Begel House, New York (1999), pp. 259–264.

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, 2006, pp. 50–65.

Original Russian Text Copyright © 2006 by Alipchenkov and Zaichik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alipchenkov, V.M., Zaichik, L.I. Modeling of the turbulent motion of particles in a vertical channel. Fluid Dyn 41, 531–544 (2006). https://doi.org/10.1007/s10697-006-0071-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0071-6

Keywords

Navigation