Expected shortfall for the makespan in activity networks under imperfect information

Abstract

This paper deals with the evaluation of the expected shortfall or the conditional value-at-risk for the makespan in scheduling problems represented as temporal networks under incomplete and uncertain information. We consider temporal activity network representations of scheduling problems affected by uncertainties related to the activity durations and we assume that for these uncertainties only incomplete or imperfect information is available. More precisely, for each activity only the interval for its integer valued duration is known to the scheduler. We address the evaluation of the expected shortfall associated to a feasible schedule discussing its importance in scheduling applications. We propose lower and upper bounds, heuristics to determine a fast computational estimation of the expected shortfall, and an exact method for a class of activity networks. The experimental results show that the proposed method can enable to use the expected shortfall as optimization criterion for wide classes of scheduling approaches considering risk-aversion in different practical contexts.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    All the related data and documentation are available at the URL http://www.om-db.wi.tum.de/psplib/.

References

  1. Artigues C, Leus R, Talla Nobibon F (2013) Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flex Serv Manuf J 25:175–205

    Google Scholar 

  2. Atakan S, Bülbül K, Noyan N (2017) Minimizing value-at-risk in single-machine scheduling. Ann Oper Res 248(1–2):25–73

    MathSciNet  MATH  Google Scholar 

  3. Baker KR (2014) Setting optimal due dates in a basic safe-scheduling model. Comput Oper Res 41:109–114

    MathSciNet  MATH  Google Scholar 

  4. Baker K, Trietsch D (2009) Principles of sequencing and scheduling. Wiley, New York

    MATH  Google Scholar 

  5. Bang-Jensen J, Gutin G (2008) Digraphs: theory, algorithms and applications, 2nd edn. Springer, London

    MATH  Google Scholar 

  6. Bein WM, Kamburowski J, Stallmann MFM (1992) Optimal reduction of two-terminal directed acyclic graphs. SIAM J Comput 21(6):1112–1129

    MathSciNet  MATH  Google Scholar 

  7. Bertsimas D, Lauprete GJ, Samarov A (2004) Shortfall as a risk measure: properties, optimization and applications. J Econ Dyn Control 28(7):1353–382

    MathSciNet  MATH  Google Scholar 

  8. Canon LC, Jeannot E (2010) Evaluation and optimization of the robustness of DAG schedules in heterogeneous environments. IEEE Trans Parallel Distrib Syst 21(4):532–546

    Google Scholar 

  9. Catalão JPS, Pousinho HMI, Contreras J (2012) Optimal hydro scheduling and offering strategies considering price uncertainty and risk management. Energy 37:237–244

    Google Scholar 

  10. Chanas S, Zieliński P (2002) The computational complexity of the critical problems in a network with interval activity times. Eur J Oper Res 136:541–550

    MATH  Google Scholar 

  11. Chanas S, Dubois D, Zieliński P (2002) On the sure criticality of tasks in activity networks with imprecise durations. IEEE Trans Syst Man Cybern B Cybern 32(4):393–407

    Google Scholar 

  12. Chang Z, Song S, Zhang Y, Ding J-Y, Zhang R, Chiong R (2017) Distributionally robust single machine scheduling with risk aversion. Eur J Oper Res 256:261–274

    MathSciNet  MATH  Google Scholar 

  13. Crabill T, Maxwell W (1969) Single machine sequencing with random processing times and random due-dates. Nav Res Logist Q 16:549–555

    MathSciNet  MATH  Google Scholar 

  14. Damelin S, Miller W (2011) The mathematics of signal processing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Daniels RL, Kouvelis P (1995) Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag Sci 41(2):363–376

    MATH  Google Scholar 

  16. De P, Ghosh JB, Wells CE (1992) Expectation-variance analyss of job sequences under processing time uncertainty. Int J Prod Econ 28(3):289–297

    Google Scholar 

  17. Demeulemeester EL, Herroelen WS (2002) Project scheduling a research handbook. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  18. De Reyck B, Demeulemeester E, Herroelen W (1999) Algorithms for scheduling projects with generalized precedence relations. In: Wȩglarz J (ed) Project scheduling, vol 14. International series in operations research and management science. Springer, Boston

    Google Scholar 

  19. Elmaghraby SE (1977) Activity networks: project planning and control by network models. Wiley, New York

    MATH  Google Scholar 

  20. Elmaghraby SE (1990) Project bidding under deterministic and probabilistic activity durations. Eur J Oper Res 49:14–34

    MATH  Google Scholar 

  21. Elmaghraby SE (2005) On the fallacy of averages in project risk management. Eur J Oper Res 165(2):307–313

    MathSciNet  MATH  Google Scholar 

  22. Fang C, Kolisch R, Wang L, Mu C (2015) An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem. Flex Serv Manuf J 27(4):585–605

    Google Scholar 

  23. Framinan JM, Leisten R, Ruiz García R (2014) Manufacturing scheduling systems. An integrated view on models, methods and tools. Springer, London

    MATH  Google Scholar 

  24. Fulkerson DR (1962) Expected critical path lengths in PERT networks. Oper Res 10:808–817

    MATH  Google Scholar 

  25. García-González J, Parrilla E, Mateo A (2007) Risk-averse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market. Eur J Oper Res 181:1354–1369

    MATH  Google Scholar 

  26. Hagstrom JN (1988) Computational complexity of PERT problems. Networks 18(2):139–147

    MathSciNet  Google Scholar 

  27. Hall NG (2016) Research and teaching opportunities in project management. INFORMS Tutor Oper Res. https://doi.org/10.1287/educ.2016.0146

  28. Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for resource constrained project scheduling. Eur J Oper Res 127(2):394–407

    MATH  Google Scholar 

  29. Herroelen WS, Leus R (2005) Project scheduling under uncertainty: survey and research potentials. Eur J Oper Res 165(2):289–306

    MATH  Google Scholar 

  30. Ivanescu CV, Fransoo JC, Bertrand JWM (2002) Makespan estimation and order acceptance in batch process industries when processing times are uncertain. OR Spectrum 24:467–495

    MATH  Google Scholar 

  31. Kalinchenko K, Veremyev A, Boginski V, Jeffcoat DE, Uryasev S (2011) Robust connectivity issues in dynamic sensor networks for area surveillance under uncertainty. Pac J Optim 7:235–248

    MathSciNet  MATH  Google Scholar 

  32. Kelley JE Jr (1961) Critical-path planning and scheduling: mathematical basis. Oper Res 9(3):296–320

    MathSciNet  MATH  Google Scholar 

  33. Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174(1):23–37

    MATH  Google Scholar 

  34. Kolisch R, Sprecher A (1996) PSPLIB—a project scheduling library. Eur J Oper Res 96:205–216

    MATH  Google Scholar 

  35. Lai T-C, Sotskov YN (1999) Sequencing with uncertain numerical data for makespan minimisation. J Oper Res Soc 50:230–243

    MATH  Google Scholar 

  36. Larsen R, Pranzo M (2019) A framework for dynamic rescheduling problems. Int J Prod Res 57(1):16–33

    Google Scholar 

  37. Lawrence SR, Sewell EC (1997) Heuristic, optimal, static, and dynamic schedules when processing times are uncertain. J Oper Manag 15:71–82

    Google Scholar 

  38. Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comput Chem Eng 32:715–727

    Google Scholar 

  39. Luh PB, Chen D, Thakur LS (1999) An effective approach for job-shop scheduling with uncertain processing requirements. IEEE Trans Robot Autom 15(2):715–727

    Google Scholar 

  40. Meloni C, Pacciarelli D, Pranzo M (2004) A rollout metaheuristic for job shop scheduling problems. Ann Oper Res 131(1–4):215–235

    MathSciNet  MATH  Google Scholar 

  41. Pinedo M (2001) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice Hall, Upper Saddle, NJ

    Google Scholar 

  42. Pranzo M, Meloni C, Pacciarelli D (2003) A new class of greedy heuristics for job shop scheduling problems. Lect Notes Comput Sci 2647:223–236

    MathSciNet  MATH  Google Scholar 

  43. Pranzo M, Pacciarelli D (2016) An iterated greedy metaheuristic for the blocking job shop scheduling problem. J Heurist 22(4):587–611

    Google Scholar 

  44. Ramponi FA, Campi MC (2017) Expected shortfall: heuristics and certificates. Eur J Oper Res 267(3):1003–1013

    MathSciNet  MATH  Google Scholar 

  45. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41

    Google Scholar 

  46. Rockafeller RT (2007) Coherent approaches to risk in optimization under uncertainty. INFORMS Tutor Oper Res. https://doi.org/10.1287/educ.1073.0032

  47. Rothkopf MH (1966) Scheduling with random service times. Manag Sci 12(9):707–713

    MathSciNet  MATH  Google Scholar 

  48. Sabuncuoglu I, Bayiz M (2000) Analysis of reactive scheduling problems in a job shop environment. Eur J Oper Res 126:567–586

    MATH  Google Scholar 

  49. Sarin SC, Nagarajan B, Liao L (2010) Stochastic scheduling: expectation-variance analysis of a schedule. Cambridge University Press, New York

    MATH  Google Scholar 

  50. Sarin SC, Sherali HD, Liao L (2014) Minimizing conditional-value-at-risk for stochastic scheduling problems. J Sched 17:5–15

    MathSciNet  MATH  Google Scholar 

  51. Słowiński R, Hapke M (eds) (2010) Scheduling under fuzziness. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  52. Szelke E, Kerr RM (1994) Knowledge-based reactive scheduling. Prod Plan Control 5(2):124–145

    Google Scholar 

  53. Tao L, Wu DD, Liu S, Dolgui A (2018) Optimal due date quoting for a risk-averse decision-maker under CVaR. Int J Prod Res 56(5):1934–1959

    Google Scholar 

  54. Urgo M, Váncza J (2018) A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to minimize the value-at-risk. Flex Serv Manuf J. https://doi.org/10.1007/s10696-018-9316-z

    Article  Google Scholar 

  55. Vieira GE, Herrmann JW, Lin E (2003) Rescheduling manufacturing systems: a framework of strategies, policies and methods. J Sched 6:39–62

    MathSciNet  MATH  Google Scholar 

  56. Wiesemann W (2012) Optimization of temporal networks under uncertainty. Springer, Heidelberg

    Google Scholar 

  57. Wu CW, Brown KN, Beck JC (2009) Scheduling with uncertain durations: modeling \(\beta\)-robust scheduling with constraints. Comput Oper Res 36:2348–2356

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlo Meloni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meloni, C., Pranzo, M. Expected shortfall for the makespan in activity networks under imperfect information. Flex Serv Manuf J 32, 668–692 (2020). https://doi.org/10.1007/s10696-019-09358-3

Download citation

Keywords

  • Expected shortfall
  • CVaR
  • Project scheduling
  • Makespan
  • Uncertainty
  • Activity networks