Skip to main content

Inter-terminal transportation: an annotated bibliography and research agenda

Abstract

The seemingly unlimited growth of containerized transport is nowadays associated with an increasing number of seaport container terminals and facilities as well as demand for port-centric value-added and just-in-time logistics services. Intense global and local competition as well as geographical limitations urgently require efficient means to handle inter-terminal transportation. Many factors influence the productivity and efficiency of inter-terminal transportation as well as its economic and environmental implications. In the last two decades, these aspects have led to a growing interest in research, in particular concerning decision analytics and innovative information technology aiming to better understand, improve, and operate inter-terminal transportation. In this paper, we present a chronological overview of related works as an annotated bibliography in order to reflect the current state of research. Furthermore, we identify future research issues and propose a respective research agenda.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. De Vries (2013) proposes an ontology for defining ITT ecosystems and further discusses physical, functional, and non-functional requirements. Jansen (2013) investigates cost effects of collaboration compared to self transportation by proposing a SM for evaluating different ITT configurations in this respect. The author points out that a large container flow stems from the transport of empty containers to and from empty container depots. Liu (2013) investigates the implications of an ITT asset-light approach by extending the IP model of Tierney et al. (2014) in order to allow adding extra vehicles at any point in time. Van den Berg (2013) proposes an asset-light solution for ITT assuming that residual capacity of visiting trucks can be flexibly used to handle ITT operations. An SM is used to determine how much extra capacity, besides the available capacity of trucks and barges, is needed to ensure that every container is delivered on time. Gerritse (2014) analyzes demand scenarios for the PoR MV1+2 in 2030 with respect to different ITT streams including import and export container streams, empty container streams, container flows from and to common logistics services and auxiliary services (e.g., customs) areas.

References

  • Bailey D, Solomon G (2004) Pollution prevention at ports: clearing the air. Environ Impact Assess Rev 24(7–8):749–774

    Article  Google Scholar 

  • Boer CA, Verbraeck A, Veeke HP (2002) Real-time control: the possible role of a backbone architecture in real-time control and emulation. In: Yücesan E, Chen CH, Snowdon JL, Charnes JM (eds) Proceedings of the 34th conference on winter simulation (WSC). San Diego, CA, pp 1675–1682

  • Böse JW (2011) General considerations on container terminal planning. In: Böse JW (ed) Handbook of terminal planning. Operations research/computer science interfaces series, vol 49. Springer, New York, NY, pp 3–22

    Google Scholar 

  • Cao JX, Lee DH, Chen JH, Shi Q (2010) The integrated yard truck and yard crane scheduling problem: Benders’ decomposition-based methods. Transp Res Part E: Logist Transp Rev 46(3):344–353

    Article  Google Scholar 

  • Caserta M, Schwarze S, Voß S (2011) Container rehandling at maritime container terminals. In: Böse JW (ed) Handbook of terminal planning. Operations research/computer science interfaces series, vol 49. Springer, New York, NY, pp 247–269

    Google Scholar 

  • Chen G, Govindan K, Yang Z (2013) Managing truck arrivals with time windows to alleviate gate congestion at container terminals. Int J Prod Econ 141(1):179–188

    Article  Google Scholar 

  • Chen L, Bostel N, Dejax P, Cai J, Xi L (2007) A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. Eur J Oper Res 181(1):40–58

    MathSciNet  Article  MATH  Google Scholar 

  • Daduna JR, Stahlbock R, Voß S (2012) Transport systems for linking seaport container terminals and dedicated satellite terminals. Working paper, presented at the international conference on logistics and maritime systems (LOGMS), University of Bremen, Bremen, Germany

  • De Vries E (2013) Inter terminal transport – captured in an ontology. Master thesis, Delft University of Technology, Delft, Netherlands. http://repository.tudelft.nl/assets/uuid:00309485-e9c0-4590-a315-18dbfaa0656f/Inter_Terminal_Transport_captured_in_an_ontology.pdf

  • Dejax PJ, Crainic TG (1987) Survey paper—A review of empty flows and fleet management models in freight transportation. Transp Sci 21(4):227–248

    Article  Google Scholar 

  • Dekker S, Verhaeghe RJ (2008) Development of a strategy for port expansion: an optimal control approach. Marit Econ Logist 10(3):258–274

    Article  Google Scholar 

  • Dorndorf U, Schneider F (2010) Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectr 32(3):617–632

    Article  MATH  Google Scholar 

  • Dudek G, Stadtler H (2005) Negotiation-based collaborative planning between supply chains partners. Eur J Oper Res 163(3):668–687

    Article  MATH  Google Scholar 

  • Duinkerken MB, Ottjes JA, Evers JJ, Kurstjens ST, Dekker R, Dellaert NP (1996) Simulation studies on inter terminal transport at the Maasvlakte. Tech. rep., TRAIL Research School, Delft University of Technology, Delft, Netherlands

  • Duinkerken MB, Dekker R, Kurstjens STGL, Ottjes JA, Dellaert NP (2006) Comparing transportation systems for inter-terminal transport at the Maasvlakte container terminals. OR Spectr 16(2):469–493

    Article  MATH  Google Scholar 

  • Evers JJ (2006) Real-time hiring of vehicles for container transport. Eur J Transp Infrastruct Res 6(2):173–198

    MathSciNet  Google Scholar 

  • Evers JJ, Koppers SA (1996) Automated guided vehicle traffic control at a container terminal. Transp Res Part A 30(1):21–34

    Google Scholar 

  • Fan L, Wilson WW, Dahl B (2012) Congestion, port expansion and spatial competition for US container imports. Transp Res Part E: Logist Transp Rev 48(6):1121–1136

    Article  Google Scholar 

  • Gerritse EJ (2014) Analysis for inter terminal transportation demand scenarios for the Maasvlakte I and II in 2030. Tech. rep., Delft University of Technology, Delft, Netherlands. http://inter-terminal.net/itt-reports/ITT%20-%20D1.1%20-%20Scenarios%20-%20Demand%20scenario%20analysis.pdf

  • Giuliano G, O’Brien T (2007) Reducing port-related truck emissions: the terminal gate appointment system at the ports of Los Angeles and Long Beach. Transp Res Part D: Transp Environ 12(7):460–473

    Article  Google Scholar 

  • Golden B, Raghavan S, Wasil E (eds) (2008) The vehicle routing problem: latest advances and new challenges. Operations research/computer science interfaces, vol 43. Springer, New York, NY

  • Grunow M, Günther HO, Lehmann M (2006) Strategies for dispatching AGVs at automated seaport container terminals. OR Spectr 28(4):587–610

    Article  MATH  Google Scholar 

  • Guan C, Liu RR (2009) Container terminal gate appointment system optimization. Marit Econ Logist 11(4):378–398

    Article  Google Scholar 

  • Gunasekaran A, Ngai EWT (2004) Information systems in supply chain integration and management. Eur J Oper Res 159(2):269–295

    MathSciNet  Article  MATH  Google Scholar 

  • Günther HO, Kim KH (2006) Container terminals and terminal operations. OR Spectr 28(4):437–445

    Article  Google Scholar 

  • Hansen I (1999) Track guided self-driven container wagon. http://www.google.com/patents/EP0903260A1?cl=en, eP Patent App.EP19970203673

  • Hansen I (2004) Automated shunting of rail container wagons in ports and terminal areas. Transp Plan Technol 27(5):385–401

    Article  Google Scholar 

  • Haralambides HE (2002) Competition, excess capacity, and the pricing of port infrastructure. Int J Marit Econ 4(4):323–347

    Article  Google Scholar 

  • He J, Zhang W, Huang Y, Yan W (2013) A simulation optimization method for internal trucks sharing assignment among multiple container terminals. Adv Eng Inform 27(4):598–614

    Article  Google Scholar 

  • Heilig L, Voß S (2014a) A cloud-based SOA for enhancing information exchange and decision support in ITT operations. In: González-Ramírez RG, Schulte F, Voß S, Ceroni Díaz JA (eds) Computational logistics. Lecture notes in computer science 8760. Springer, New York, NY, pp 112–131

    Google Scholar 

  • Heilig L, Voß S (2014b) Information systems and technologies in seaports: An overview. Tech. rep., Institute of Information Systems, University of Hamburg, Hamburg, Germany

  • Hendriks MPM, Armbruster D, Laumanns M, Lefeber E, Udding JT (2007a) On the benefit of modifying the strategic allocation of cyclically calling vessels for multi-terminal container operators. Tech. Rep. SE Report Nr. 2007–16, Eindhoven University of Technology, Eindhoven, Netherlands

  • Hendriks MPM, Armbruster D, Laumanns M, Lefeber E, Udding JT (2007b) Strategic allocation of cyclically arriving container vessels to inter-related terminals. In: Proceedings of the workshop on logistics networks. Dresden, Germany, pp 1–17

  • Hendriks MPM, Armbruster D, Laumanns M, Lefeber E, Udding JT (2012) Strategic allocation of cyclically calling vessels for multi-terminal container operators. Flex Serv Manuf J 24(3):248–273

    Article  Google Scholar 

  • Jansen R (2013) Determining the cost savings for the participants in a joint inter terminal transport system at the Port of Rotterdam. Master thesis, Erasmus University of Rotterdam, Rotterdam, Netherlands. http://inter-terminal.net/itt-reports/ITT%20-%20D3.1%20-%20Evaluation%20-%20Cost%20and%20benefits.pdf

  • Konings JW (1996) Integrated centres for the transshipment, storage, collection and distribution of goods: a survey of the possibilities for a high-quality intermodal transport concept. Transp Policy 3(1):3–11

    Article  Google Scholar 

  • Kovacs G, Spens K, Roso V (2008) Factors influencing implementation of a dry port. Int J Phys Distrib Logist Manag 38(10):782–798

    Article  Google Scholar 

  • Kurstjens STGL, Dekker R, Dellaert NP, Duinkerken MB, Ottjes JA, Evers JJ (1996) Planning of inter terminal transport at the Maasvlakte. Tech. rep, TRAIL Research School, Delft, Netherlands

  • Lau HYK, Zhao Y (2008) Integrated scheduling of handling equipment at automated container terminals. Int J Product Econ 112(2):665–682

    Article  MATH  Google Scholar 

  • Le-Anh T, De Koster M (2006) A review of design and control of automated guided vehicle systems. Eur J Oper Res 171(1):1–23

    MathSciNet  Article  MATH  Google Scholar 

  • Lee DH, Jin JG, Chen JH (2012) Terminal and yard allocation problem for a container transshipment hub with multiple terminals. Transp Res Part E: Logist Transp Rev 48(2):516–528

    Article  Google Scholar 

  • Lehnfeld J, Knust S (2014) Loading, unloading and premarshalling of stacks in storage areas: survey and classification. Eur J Oper Res 239(2):297–312

    MathSciNet  Article  MATH  Google Scholar 

  • Li L, Negenborn RR, De Schutter B (2015a) Intermodal freight transport planning—a receding horizon control approach. Trans Res Part C: Emerg Technol 60:77–95

    Article  Google Scholar 

  • Li S, Negenborn RR, Lodewijks G (2015b) A two phase approach for inter-terminal transport of inland vessels using preference-based coordination rules. In: Corman F, Voß S, Negenborn RR (eds) Computational logistics. Lecture notes in computer science 9335. Springer, Cham, Switzerland, pp 281–297

    Google Scholar 

  • Liu P (2013) Optimizing inter-terminal transportation at the Port of Rotterdam: an asset-light solution. Master thesis, Erasmus University of Rotterdam, Rotterdam, Netherlands. http://thesis.eur.nl/pub/20981/

  • Liu Q, Medda F (2009) Port infrastructure efficiency: the Europe-Mediterranean case. Int J Shipp Transp Logist 1(4):361–385

    Article  Google Scholar 

  • McGinley K (2014) Preparing port container terminals for the future: making the most of intelligent transport systems (ITS). In: Brebbia CA (ed) Urban transport XX. WIT Press, Southampton, UK, WIT transactions on the built environment, vol 138, pp 419–427

  • McGinley K, Murray MR (2012) Port technology of the future. In: International forum on shipping, ports and airports (IFSPA), Hong Kong, China, pp 289–296

  • Mishra N, Roy D, Van Ommeren JK (2013) A stochastic model for inter-terminal container transportation. Tech. Rep. Memorandum 2032, University of Twente, Twente, Netherlands

  • Nabais JL, Negenborn R, Carmona Benitez R, Ayala Botto M (2013) Setting cooperative relations among terminals at seaports using a multi-agent system. In: Proceedings of the 16th IEEE international conference on intelligent transportation systems (ITSC), The Hague, Netherlands, pp 1731–1736

  • Namboothiri R, Erera AL (2008) Planning local container drayage operations given a port access appointment system. Transp Res Part E: Logist Transp Rev 44(2):185–202

    Article  Google Scholar 

  • Ng WC (2005) Crane scheduling in container yards with inter-crane interference. Eur J Oper Res 164(1):64–78

    MathSciNet  Article  MATH  Google Scholar 

  • Nieuwkoop F, Corman F, Negenborn RR, Duinkerken MB, Van Schuylenburg M, Lodewijks G (2014) Decision support for vehicle configuration determination in inter terminal transport system design. In: Proceedings of the 11th IEEE international conference on networking, sensing and control (ICNSC). Miami, FL, pp 613–618

  • Notteboom TE (2006a) The time factor in liner shipping services. Marit Econ Logist 8(1):19–39

    Article  Google Scholar 

  • Notteboom TE (2006b) Traffic inequality in seaport systems revisited. J Transp Geogr 14(2):95–108

    Article  Google Scholar 

  • Notteboom TE, Winkelmans W (2001) Structural changes in logistics: how will port authorities face the challenge? Marit Policy Manag 28(1):71–89

    Article  Google Scholar 

  • Olivier D, Slack B (2006) Rethinking the port. Environ Plann A 38(8):1409–1427

    Article  Google Scholar 

  • Ottjes JA, Hengst S, Tutuarima WH (1994) A simulation model of a sailing container terminal service in the Port of Rotterdam. In: Proceedings of the conference on modelling and simulation (ESM). Barcelona, Spain, pp 876–880

  • Ottjes JA, Duinkerken MB, Evers JJM, Dekker R (1996) Robotised inter terminal transport of containers. In: Proceedings of the 8th european simulation symposium (ESS). Genua, Italy, pp 621–625

  • Ottjes JA, Veeke HP, Duinkerken MB (2002) Simulation studies of robotized multi terminal systems. In: Proceedings of the international congress on freight transport automation and multimodality (FTAM). Delft, Netherlands, pp 1–24

  • Ottjes JA, Veeke HP, Duinkerken MB, Rijsenbrij JC, Lodewijks G (2006) Simulation of a multiterminal system for container handling. OR Spectr 28(4):447–468

    Article  MATH  Google Scholar 

  • Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup and delivery problems—part I: transportation between customers and depot. J Betriebswirtschaft 58(1):21–51

    Article  Google Scholar 

  • Pavone M, Bisnik N, Frazzoli E, Isler V (2009) A stochastic and dynamic vehicle routing problem with time windows and customer impatience. Mob Netw Appl 14(3):350–364

    Article  Google Scholar 

  • Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing problems. Eur J Oper Res 225(1):1–11

    MathSciNet  Article  MATH  Google Scholar 

  • Posti A, Häkkinen J, Tapaninen U (2011) Promoting information exchange with a port community system—case Finland. Int Supply Chain Manag Collab Pract 4:455–473

    Google Scholar 

  • Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and routing algorithms for AGVs: a survey. Int J Product Res 40(3):745–760

    Article  MATH  Google Scholar 

  • Regan AC, Golob TF (1999) Freight operators’ perceptions of congestion problems and the application of advanced technologies: Results from a 1998 survey of 1200 companies operating in California. Transp J 38:57–67

    Google Scholar 

  • Rijsenbrij JC, Pielage BA, Visser J (2006) State-of-the-art on automated (underground) freight transport systems for the EU-TREND project. Tech. rep., Delft University of Technology, Delft, Netherlands

    Google Scholar 

  • Roso V (2007) Evaluation of the dry port concept from an environmental perspective: a note. Transp Res Part D: Transp Environ 12(7):523–527

    Article  Google Scholar 

  • Roso V, Woxenius J, Lumsden K (2009) The dry port concept: connecting container seaports with the hinterland. J Transp Geogr 17(5):338–345

    Article  Google Scholar 

  • Saanen YA, Valkengoed MV (2005) Comparison of three automated stacking alternatives by means of simulation. In: Proceedings of the 37th winter simulation conference (WSC). Orlando, FL, pp 1567–1576

  • Schroër H, Corman F, Duinkerken M, Negenborn R, Lodewijks G (2014) Evaluation of inter terminal transport configurations at Rotterdam Maasvlakte using discrete event simulation. In: Proceedings of the 46th winter simulation conference (WSC). Savannah, GA, pp 1771–1782

  • Stahlbock R, Voß S (2008) Vehicle routing problems and container terminal operations—an update of research. In: Golden B, Raghavan S, Wasil E (eds) The vehicle routing problem: latest advances and new challenges. Operations research/computer science interfaces, vol 43. Springer, New York, NY, pp 551–589

    Chapter  Google Scholar 

  • Steenken D, Henning A, Freigang S, Voß S (1993) Routing of straddle carriers at a container terminal with the special aspect of internal moves. OR Spektr 15:167–172

    Article  Google Scholar 

  • Steenken D, Stahlbock R, Voß S (2004) Container terminal operation and operations research—a classification and literature review. OR Spectr 26(1):3–49

    Article  MATH  Google Scholar 

  • Tierney K, Voß S, Stahlbock R (2014) A mathematical model of inter-terminal transportation. Eur J Oper Res 235(2):448–460

    MathSciNet  Article  MATH  Google Scholar 

  • United Nations (2002) Value-added services of logistics centres in port areas. In: Commercial development of regional ports as logistics centres, pp 19–34

  • Van Baalen P, Zuidwijk R, Van Nunen J (2009) Port inter-organizational information systems: capabilities to service global supply chains. Found Trends Technol Inf Oper Manag 2(2–3):81–241

    Google Scholar 

  • Van den Berg S (2013) Inter-terminal transport with uncertain connections. Bachelor thesis, Erasmus University of Rotterdam, Rotterdam, Netherlands. thesis.eur.nl/pub/13869/vandenBerg.pdf

  • Van Reeven P (2010) The effect of competition on economic rents in seaports. J Transp Econ Policy 44(1):79–92

    Google Scholar 

  • Vis IFA (2006) Survey of research in the design and control of automated guided vehicle systems. Eur J Oper Res 170(3):677–709

    MathSciNet  Article  MATH  Google Scholar 

  • Vis IFA, De Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–16

    Article  MATH  Google Scholar 

  • Vis IFA, Harika I (2004) Comparison of vehicle types at an automated container terminal. OR Spectr 26(1):117–143

    Article  MATH  Google Scholar 

  • Vis IFA, De Koster R, Roodbergen KJ, Peeters LWP (2001) Determination of the number of automated guided vehicles required at a semi-automated container terminal. J Oper Res Soc 52(4):409–417

    Article  MATH  Google Scholar 

  • Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. Manag Inf Syst Q 26(2):13–23

    Google Scholar 

  • Wiegmans BW, Hoest AVD, Notteboom TE (2008) Port and terminal selection by deep-sea container operators. Marit Policy Manag 35(6):517–534

    Article  Google Scholar 

  • Wilmsmeier G, Hoffmann J, Sanchez RJ (2006) The impact of port characteristics on international maritime transport costs. Res Transp Econ 16:117–140

    Article  Google Scholar 

  • Xin J, Negenborn RR, Lodewijks G (2014) Energy-aware control for automated container terminals using integrated flow shop scheduling and optimal control. Trans Res Part C: Emerg Technol 44:214–230

    Article  Google Scholar 

  • Yang CH, Choi YS, Ha TY (2004) Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectr 26(2):149–170

    Article  MATH  Google Scholar 

  • Zhang J, Ioannou PA, Chassiakos A (2006) Automated container transport system between inland port and terminals. ACM Trans Model Comput Simul 16(2):95–118

    Article  Google Scholar 

  • Zheng H, Negenborn RR, Lodewijks G (2015) Cooperative distributed collision avoidance based on ADMM for waterborne AGVs. In: Corman F, Voß S, Negenborn RR (eds) Computational logistics. Lecture notes in computer science 9335. Springer, Cham, Switzerland, pp 181–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Heilig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heilig, L., Voß, S. Inter-terminal transportation: an annotated bibliography and research agenda. Flex Serv Manuf J 29, 35–63 (2017). https://doi.org/10.1007/s10696-016-9237-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-016-9237-7

Keywords

  • Inter-termal transportation
  • Planning
  • Optimization
  • Simulation
  • Information technology
  • Survey
  • Research agenda