Flexible Services and Manufacturing Journal

, Volume 25, Issue 4, pp 576–608 | Cite as

A scheduling problem for a novel container transport system: a case of mobile harbor operation schedule

Article

Abstract

Mobile Harbor (MH) is a movable floating platform with a container handling system on board so that it can load/discharge containers to/from an anchored container ship in the open sea. As with typical quay crane operation, an efficient schedule for its operation is a key to enhancing its operational productivity. A MH operation scheduling problem is to determine a timed sequence of loading/discharging tasks, assignment of MH units to each task, and their docking position, with an objective of minimizing the makespan of a series of incoming container ships. A mixed integer programming model is formulated to formally define the problem. As a practical solution method to the problem, this paper proposes a rule-based algorithm and a random key based genetic algorithm (rkGA). Computational results show that the rkGA method produces a better-quality solution than the rule-based method, while requiring longer computation time.

Keywords

Random key based genetic algorithm Mobile harbor Operation scheduling problem Quay crane scheduling Vehicle routing problem Genetic algorithm Mixed integer programming 

References

  1. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. Oper Res Soc Am J Comput 6:154–160. doi:10.1287/ijoc.6.2.154 MATHGoogle Scholar
  2. Casco DO, Golden BL, Wasil EA (1988) Vehicle routing with backhauls: models, algorithms, and case studies. In: Golen BL, Assad AA (eds) Vehicle routing: methods and studies. Elsevier, Amsterdam, pp 127–147Google Scholar
  3. Desrochers M, Lenstra JK, Savelsbergh MWP, Soumis F (1988) Vehicle routing with time windows: optimization and approximation. In: Golen BL, Assad AA (eds) Vehicle routing: methods and studies. Elsevier, Amsterdam, pp 65–84Google Scholar
  4. Goldberg DE (1989) Genetic algorithm in search optimization and machine learning. Addison-Wesley, BostonGoogle Scholar
  5. Goncalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95. doi:10.1016/j.ejor.2004.03.012 MathSciNetCrossRefMATHGoogle Scholar
  6. Han SH, Lee JH (2009) Container docking system, container crane, and container docking method, container crane and container docking method. South Korean patent application, filing number: 1020090082529, filing date: 2 Sept 2009Google Scholar
  7. Hong Kong Mid-Stream Operators Association (HKMOA) (2009) http://www.hkmoa.com/Statististics.aspx?lang=E
  8. Jung H, Kwak BM (2009) Balance keeping crane and vessel with the crane. South Korean patent application, filing number: 10-2009-0074380, filing date: 12 Aug 2009Google Scholar
  9. Kim JH, Morrison JR (2011) Offshore port service concept: classification and economic feasibility. Flex Serv Manuf J 156:752–768. doi:10.1007/S10696-011-9100-9 Google Scholar
  10. Kim KH, Park Y (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768. doi:10.1016/S0377-2217(03)00133-4 CrossRefMATHGoogle Scholar
  11. Kim SH, Kim UH, Hong YS, Ju HJ, Kim J, Kwak YG, Kwak BM (2009) Auto landing, location, locking device for spreader of crane and method thereof. South Korean patent application, filing number: 1020090074305, filing date: 12 Aug 2009Google Scholar
  12. Kwak BM, Oh JH (2009) Balance keeping crane and vessel with the crane. South Korean patent application, filing number: 1020090070799, filing date: 31 July 2009Google Scholar
  13. Taiwah Sea & Land Heavy Transport Ltd (TS & LHT) (2011) Tai Wah Jumbo. http://www.taiwahhk.com/Equippage/equippage.htm
  14. Lee PS, Jung H, Lee DY, Kim SI (2009) Docking system for a ship and docking method using the same. South Korean patent application, filing number: 1020090074208, filing date: 12 Aug 2009Google Scholar
  15. Liu J, Wan YW, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Nav Res Logist 53:60–74. doi:10.1002/nav.20108 MathSciNetCrossRefMATHGoogle Scholar
  16. Meisel F (2009) Seaside operations planning in container terminals. Physica-Verlag, Berlin. doi:10.1007/978-3-7908-2191-8
  17. Mobile Harbor Business Team (MHBT) (2011) An introduction material about the mobile harbor project. http://www.mobileharbor.or.kr/index.html → English → Public Relation → Brochure. Accessed 13 Jan 2011
  18. Moccia L, Cordeau J-F, Gaudioso M, Laporte G (2006) A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Nav Res Logist 53:45–59. doi:10.1002/nav.20121 MathSciNetCrossRefMATHGoogle Scholar
  19. Nagy G, Salhi S (2005) Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. Eur J Oper Res 162:126–141. doi:10.1016/j.ejor.2002.11.003 CrossRefMATHGoogle Scholar
  20. Norman BA, Bean JC (1999) A genetic algorithm methodology for complex scheduling problems. Nav Res Logist 46:199–211. doi:10.1002/(SICI)1520-6750(199903)46:2<199:AID-NAV5>3.0.CO;2-L MathSciNetCrossRefMATHGoogle Scholar
  21. Okada I, Zhang XF, Yang HY, Fujimura S (2010) A random key-based genetic algorithm approach for resource-constrained project scheduling problem with multiple modes. In: Proceedings of the international multiconference of engineers and computer scientists, vol 1Google Scholar
  22. Peterkofsky RI, Daganzo DF (1990) A branch and bound solution method for the crane scheduling problem. Transp Res B 24:159–172. doi:10.1016/0191-2615(90)90014-P CrossRefGoogle Scholar
  23. Salhi S, Nagy G (1999) A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. J Oper Res Soc 50:1034–1042. doi:10.1057/palgrave.jors.2600808 MATHGoogle Scholar
  24. Sammarra M, Cordeau J-F, Laporte G, Monaco MF (2007) A tabu search heuristic for the quay crane scheduling problem. J Sched 10:327–336. doi:10.1007/s10951-007-0029-5 CrossRefMATHGoogle Scholar
  25. Shin HK, Shin JW, Kim MS, Jung WJ (2009) Docking system of ship. South Korean patent application, filing number: 1020090093030, filing date: 30 Sept 2009Google Scholar
  26. Spears WM, Dejong KA (1991) On the virtues of parameterized uniform crossover. In: Proceedings of the fourth international conference on genetic algorithms, San Diego, pp 230–236Google Scholar
  27. Suh NP (2008) Mobile harbor to improve ocean transportation system and transportation method using the same. Korean patent no. 100895604, granted date: 23 Apr 2008Google Scholar
  28. Sung IK, Nam HC, Lee TS (accepted) Scheduling algorithm for mobile harbor: an extended m-parallel machine problem. Int J Ind Eng TheoryGoogle Scholar
  29. Xu S, Bean JC (2007) A genetic algorithm for scheduling parallel non-identical batch processing machines. In: Proceeding of the IEEE symposium on computational intelligence in scheduling (SCIS 07), Honolulu, HI, pp 143–150Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringKorea Advanced Institute of Science and TechnologyTaejonRepublic of Korea

Personalised recommendations