Skip to main content

Advertisement

Log in

Container loading and unloading scheduling for a Mobile Harbor system: a global and local search method

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Mobile Harbor (MH) is a type of mobile floating port system with an on-board crane for off-shore container handling capability. Due to its unique operational features, it creates a new type of operational scheduling problem. Container loading and unloading sequence schedule for the MH on-board crane is one such problem. An optimal schedule should minimize the on-board crane’s moves in a stem-to-stern direction while satisfying MH’s stability constraint. This paper presents a mathematical programming model to formally define the problem, and two heuristic methods, Genetic Algorithm (GA) method and local search method, are developed. Experimental results show that both GA and the local search method generate solutions of similar quality when the stability constraint is loose and that the local search method is not effective in finding a feasible solution for problems with a tight stability constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202:615–627. doi:10.1016/j.ejor.2009.05.031

    Article  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic Algorithms in search, optimization, and machine learning. Addison Wesley, MA, USA

    MATH  Google Scholar 

  • Kim KY, Kim KH (2003) Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals. Nav Res Logist 50:498–514. doi:10.1002/nav.10076

    Article  MATH  Google Scholar 

  • Kim KH, Park Y (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768. doi:10.1016/S0377-2217(03)00133-4

    Article  MATH  Google Scholar 

  • Lee T, Sung I, Shin K, Nam H (2010) Optimal planning for Mobile Harbor system operation. Conference of society of CAD/CAM engineers

  • Meisel F, Wichmann M (2010) Container sequencing for quay cranes with internal reshuffles. OR Spectr 32:569–591. doi:10.1007/s00291-009-0191-6

    Article  MATH  Google Scholar 

  • Michalewicz Z (1999) Genetic Algorithms + Data structures = Evolution programs. Springer-Verlag, 3rd, revised and extended edition

  • Moccia L, Cordeau J-F, Gaudioso M, Laporte G (2006) A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Nav Res Logist 53:45–59. doi:10.1002/nav.20121

    Article  MathSciNet  MATH  Google Scholar 

  • Sammarra M, Cordeau J-F, Laporte G, Monaco MF (2007) A tabu search heuristic for the quay crane scheduling problem. J Sched 10:327–336. doi:10.1007/s10951-007-0029-5

    Article  MATH  Google Scholar 

  • Shin K, Lee T (2010a) Container unloading scheduling optimization problem with Mobile Harbor’s stability constraint: near optimal solution searching method based on rule-based heuristic and local search method. In: Proceedings of spring joint conference of Korean institute of industrial engineers and Korean operations research and management science society

  • Shin K, Lee T (2010b) A GA-based approach for container unloading scheduling problem with Mobile Harbor’s stability constraint. The 2010 international conference on logistics and maritime systems

  • Suh NP (2008) Mobile Harbor to improve ocean transportation system. China Patent 200810175215.1

  • van Kampen A, Strom C, Buydens L (1996) Lethalization, penalty and repair functions for constraint handling in the genetic algorithm methodology. Chemom Intell Lab Syst 34:55–68. doi:10.1016/0169-7439(96)00010-X

    Article  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85. doi:10.1007/BF00175354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesik Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, K., Lee, T. Container loading and unloading scheduling for a Mobile Harbor system: a global and local search method. Flex Serv Manuf J 25, 557–575 (2013). https://doi.org/10.1007/s10696-012-9134-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-012-9134-7

Keywords

Navigation