Skip to main content
Log in

Neurotransmitter norepinephrine regulates chromatosomes aggregation and the formation of blotches in coral trout Plectropomus leopardus

  • Research
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Color changes and pattern formations can represent strategies of the utmost importance for the survival of individuals or of species. Previous studies have associated capture with the formation of blotches (areas with light color) of coral trout, but the regulatory mechanisms link the two are lacking. Here, we report that capture induced blotches formation within 4–5 seconds. The blotches disappeared after anesthesia dispersed the pigment cells and reappeared after electrical stimulation. Subsequently, combining immunofluorescence, transmission electron microscopy and chemical sympathectomy, we found blotches formation results from activation of catecholaminergic neurons below the pigment layer. Finally, the in vitro incubation and intraperitoneal injection of norepinephrine (NE) induced aggregation of chromatosomes and lightening of body color, respectively, suggesting that NE, a neurotransmitter released by catecholaminergic nerves, mediates blotches formation. Our results demonstrate that acute stress response-induced neuronal activity can drive rapid changes in body color, which enriches our knowledge of physiological adaptations in coral reef fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  • Amiri M (2009) Postsynaptic alpha 2-adrenoceptors mediate melanosome aggregation in melanophores of the white-spotted rabbitfish (Siganus canaliculatus). Pak J Biol Sci 12:1

    Article  CAS  PubMed  Google Scholar 

  • Amiri M, Shaheen HM (2012) Chromatophores and color revelation in the blue variant of the Siamese fighting fish (Betta splendens). Micron 43:159–169

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Karlsson J, Grundström N (1984) Adrenergic nerves and the alpha2-adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol Scand 121(2):173–179. https://doi.org/10.1111/j.1748-1716.1984.tb07444.x

    Article  CAS  PubMed  Google Scholar 

  • Archer SK, Heppell SA, Semmens BX, Pattengill-Semmens CV, Bush PG, Mccoy CM, Johnson BC (2012) Patterns of color phase indicate spawn timing at a Nassau grouper Epinephelus striatus spawning aggregation. Current Zoology 58:73–83

    Article  Google Scholar 

  • Aspengren S, Sköld HN, Quiroga G, Mårtensson L, Wallin M (2003a) Noradrenaline-and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res 16:59–64

    Article  CAS  PubMed  Google Scholar 

  • Aspengren S, Sköld HN, Quiroga G, Mårtensson L, Wallin M (2003b) Noradrenaline-and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res 16(1):59–64. https://doi.org/10.1034/j.1600-0749.2003.00003.x

    Article  CAS  PubMed  Google Scholar 

  • Ballowitz E (1893) Die Nervenendigungen der Pigmentzellen, ein Beitrag zur Kenntnis des Zusammenhanges der Endverzweigungen der Nerven mit dem Protoplasma der Zellen. Zeit. Wiss. Zool. 56:673–706

  • Bandaranayake WM (2006) The nature and role of pigments of marine invertebrates. Nat Prod Rep 23:223–255

    Article  CAS  PubMed  Google Scholar 

  • Bauer DH, Demski LS (1980) Vertical banding evoked by electrical stimulation of the brain in anaesthetized green sunfish, Lepomis cyanellus, and bluegills, Lepomis macrochirus. J Exp Biol 84:149–160

    Article  CAS  PubMed  Google Scholar 

  • Biswas SP, Jadhao AG, Palande NV (2014) Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus. Fish Physiol Biochem 40:457–467

    Article  CAS  PubMed  Google Scholar 

  • Burton D (1985) Differential in vivo sensitivity of melanophores and xanthophores to catecholamines in winter flounder (Pseudopleuronectes americanus Walbaum) integumentary patterns. J Exp Biol 114:649–659

    Article  CAS  Google Scholar 

  • Burton D, Mayo D (1995) Adrenoceptors in cryptic patterning of a flatfish, Pleuronectes americanus. Proc R Soc London. Ser B: Biol Sci 261:181–186

  • Burton D, Vokey J (2000) α1-and α2-adrenoceptor mediation in melanosome aggregation in cryptic patterning of Pleuronectes americanus. Comp Biochem Physiol a: Mol Integr Physiol 125:359–365

    Article  CAS  PubMed  Google Scholar 

  • Choi S-H, Kim B-H, Lee C-H, Lee Y-D (2020) Response of body color change rearing under different light intensity conditions in farmed red spotted grouper, Epinephelus akaara. Fish Aquat Sci 23:1–9

    Article  Google Scholar 

  • CL S (1961) Synopsis of biological data on groupers (Epinephelus and allied genera) of the Western North Atlantic. FAO Fish Biol. Synopses 23:61

  • Colin PL (1992) Reproduction of the Nassau grouper, Epinephelus striatus (Pisces: Serranidae) and its relationship to environmental conditions. Environ Biol Fishes 34:357–377

    Article  Google Scholar 

  • Cubukcu E, Kahraman I (2008) Hue, saturation, lightness, and building exterior preference: An empirical study in Turkey comparing architects’ and nonarchitects’ evaluative and cognitive judgments. Color Res Appl: Endorsed Inter-Soc Color Council, The Colour Group (Great Britain) Canadian Soc Color, Color Sci Assoc Japan, Dutch Soc Study of Color, Swedish Colour Centre Foundation, Colour Soc Australia, Centre Français De La Couleur 33:395–405

    Article  Google Scholar 

  • Cunha MA, Berglund A, Monteiro NM (2017) Female ornaments signal own and offspring quality in a sex-role-reversed fish with extreme male parental care. Marine Ecology 38(5):e12461. https://doi.org/10.1111/maec.12461

    Article  Google Scholar 

  • Deloach N (1993) Reef coral identification: Florida. Jacksonville, FL. New World Publications Inc, Caribbean, Bahamas

    Google Scholar 

  • Demski L (1969) Behavioral effects of electrical stimulation of the brain in free-swimming bluegills (Lepomis macrochirus). University of Rochester, New York, USA, Ph.D. dissertation

  • Enami M (1955) Melanophore-contracting hormone (MCH) of possible hypothalamic origin in the catfish. Parasilurus Sci 121(3132):36–37. https://doi.org/10.1126/science.1121.3132.1136

    Article  CAS  Google Scholar 

  • Figon F, Casas J (2018) Morphological and physiological colour changes in the animal kingdom. eLS: 1–11. https://doi.org/10.1002/9780470015902.a9780470028065

  • Fujii R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13(5):300–319. https://doi.org/10.1034/j.1600-0749.2000.130502.x

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Oshima N (1986) Control of chromatophore movements in teleost fishes. Zoolog Sci 3(1):13–47

    CAS  Google Scholar 

  • Fujii R, Oshima N (1994) Factors influencing motile activities of fish chromatophores. In: Arpigny JL, Coyette J, Davail S, Feller G, Fonzé E, Foulkes EC, Frère J-M, Fujii R, Génicot S, Gerday C, Joris B, Lamotte-Brasseur J, Maina JN, Narinx E, Nguyen-Disteche M, Oshima N, Viarengo A, Zekhnini Z (eds) Advances in Comparative and Environmental Physiology. Springer, Berlin, Heidelberg, pp 1–54. https://doi.org/10.1007/978-3-642-78598-6_1

    Chapter  Google Scholar 

  • Fujishige A, Moriwake T, Ono A, Ishii Y, Tsuchiya T (2000) Control of melanosome movement in intact and cultured melanophores in the bitterling, Acheilognathus lanceolatus. Comp Biochem Physiol A: Mol Integr Physiol 127:167–175

    Article  CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen M, Youdim M (1997) Mechanism of 6-hydroxydopamine neurotoxicity. in: Riederer P, Calne DB, Horowski R, Mizuno Y, Poewe W, Youdim MBH (Eds), Advances in Research on Neurodegeneration. J Neural Transm. Supplementa. Springer. Berlin, German, pp. 55-66. https://doi.org/10.1007/978-3-7091-6842-4_7

  • Goda M, Kuriyama T (2021) Physiological and Morphological Color Changes in Teleosts and in Reptiles. In: Hashimoto H, Goda M, Futahashi R, Kelsh R, Akiyama T (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore, pp 387–423. https://doi.org/10.1007/978-981-16-1490-3_13

    Chapter  Google Scholar 

  • Hanlon R, Chiao C-C, Mäthger L, Barbosa A, Buresch K, Chubb C (2009) Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Phil Trans R Soc B: Biol Sci 364:429–437

    Article  CAS  Google Scholar 

  • Heemstra PC, Randall JE (1993) FAO species catalogue Vol. 16. Groupers of the world (family: Serranidae, Subfamily: Epinephelinae). An annotated and illustrated catalogue of the grouper, rocked, hind, coral grouper and lyretail species known to date. FAO Fisheries synopsis: FAO, Rome, p. 382

  • Jones BE, Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. J Comp Neurol 261(1):15–32. https://doi.org/10.1002/cne.902610103

    Article  CAS  PubMed  Google Scholar 

  • Junqueira L, Salles L (1978) Effects of 6-hydroxydopamine and 5-hydroxydopamine onlthe teleost melanophores innervation. J Fish Biol 13(4):415–419. https://doi.org/10.1111/j.1095-8649.1978.tb03449.x

    Article  Google Scholar 

  • Kasukawa H, Oshima N (1987) Divisionistic generation of skin hue and the change of shade in the scalycheek damselfish, Pomacentrus lepidogenys. Pigment Cell Res 1:152–157

    Article  CAS  PubMed  Google Scholar 

  • Kasukawa H, Sugimoto M, Oshima N, Fujii R (1985) Control of chromatophore movements in dermal chromatic units of blue damselfish–I. The melanophore. Comparative biochemistry and physiology. C, Comp Pharmacol Toxicol 81:253–257

    CAS  Google Scholar 

  • Kindermann C, Hero J-M (2016) Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii). Zoomorphology 135(2):197–203. https://doi.org/10.1007/s00435-016-0303-1

    Article  Google Scholar 

  • Kindermann C, Narayan EJ, Hero J-M (2014) The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One 9(12):e114120. https://doi.org/10.1371/journal.pone.0114120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostrzewa RM, Jacobowitz DM (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev 26(3):199–288

    CAS  PubMed  Google Scholar 

  • Kumazawa T, Ryozo F (1984) Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in tilapia. Comp Biochem Physiol Part C: Comp Pharmacol 78(2):263–266. https://doi.org/10.1016/0742-8413(84)90080-X

    Article  CAS  Google Scholar 

  • Ligon RA, McCartney KL (2016) Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Curr Zool 62(3):237–252. https://doi.org/10.1093/cz/zow051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longley W (1917) Studies upon the biological significance of animal coloration. I. The colors and color changes of West Indian reef-fishes. J Exp Zool 23:533–601

    Article  Google Scholar 

  • Mårtensson LG, Andersson RG (2000) Is Ca2+ the second messenger in the response to melatonin in cuckoo wrasse melanophores? Life Sci 66:1003–1010

    Article  PubMed  Google Scholar 

  • Maeno N, Iga T (1992) Adrenergic mechanisms associated with the movement of platelets in iridophores from the freshwater goby, Odontobutis obscura. Comp Biochem Physiol C, Comp Pharmacol Toxicol 102(2):233–237. https://doi.org/10.1016/0742-8413(92)90106-h

    Article  CAS  PubMed  Google Scholar 

  • Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL (2019) Colours and colour vision in reef fishes: Past, present and future research directions. J Fish Biol 95:5–38

    Article  PubMed  Google Scholar 

  • Masazumi S, Noriko O, Ryozo F (1985) Mechanisms controlling motile responses of amelanotic melanophores in the medaka, Oryzias latipes. Zoolog Sci 2:317–322

    Google Scholar 

  • Nagai M, Oshima N, Fujii R (1986) A comparative study of melanin-concentrating hormone (MCH) action on teleost melanophores. Biol Bull 171(2):360–370. https://doi.org/10.2307/1541678

    Article  CAS  Google Scholar 

  • Nardocci G, Navarro C, Cortés PP, Imarai M, Montoya M, Valenzuela B, Jara P, Acuña-Castillo C, Fernández R (2014) Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish Shellfish Immunol 40(2):531–538. https://doi.org/10.1016/j.fsi.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  • Nemtzov SC, Kajiura SM, Lompart CA (1993) Diel color phase changes in the coney, Epinephelus fulvus (Teleostei, Serranidae). Copeia 1993:883–885

    Article  Google Scholar 

  • Nguyen N, Sugimoto M, Zhu Y (2006) Production and purification of recombinant somatolactin β and its effects on melanosome aggregation in zebrafish. Gen Comp Endocrinol 145:182–187

    Article  CAS  PubMed  Google Scholar 

  • Nilsson H, Rutberg M, Wallin M (1996) Localization of kinesin and cytoplasmic dynein in cultured melanophores from Atlantic cod, Gadus morhua. Cell Motil Cytoskelet 33:183–196

    Article  CAS  Google Scholar 

  • Oshima N, Kasukawa H, Fujii R (1989) Control of chromatophore movements in the blue-green damselfish, Chromis viridis. Comp Biochem Physiol Part C: Comp Pharmacol 93:239–245

    Article  Google Scholar 

  • Oshima N, Nakamaru N, Araki S, Sugimoto M (2001) Comparative analyses of the pigment-aggregating and-dispersing actions of MCH on fish chromatophores. Comp Biochem Physiol C: Toxicol Pharmacol 129:75–84

    CAS  PubMed  Google Scholar 

  • Qu M, Ding S, Xu X, Shen M, You Y, Su Y (2012) Ontogenetic development of the digestive system and growth in coral trout (Plectropomus leopardus). Aquaculture 334–337:132–141. https://doi.org/10.1016/j.aquaculture.2011.12.046

    Article  Google Scholar 

  • Ramachandran V, Tyler C, Gregory R, Rogers-Ramachandran D, Duensing S, Pillsbury C, Ramachandran C (1996) Rapid adaptive camouflage in tropical flounders. Nature 379:815–818

    Article  CAS  PubMed  Google Scholar 

  • Ramlochansingh C, Branoner F, Chagnaud BP, Straka H (2014) Efficacy of tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles. PloS One 9(7):e101606. https://doi.org/10.1371/journal.pone.0101606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudh A, Qvarnström A (2013) Adaptive colouration in amphibians, Seminars in cell & developmental biology. Elsevier, pp 553–561

    Google Scholar 

  • Ryan RW, Post JI, Solc M, Hodson PV, Ross GM (2002) Catecholaminergic neuronal degeneration in rainbow trout assessed by skin color change: a model system for identification of environmental risk factors. Neurotoxicology 23(4–5):545–551. https://doi.org/10.1016/S0161-813X(02)00063-3

    Article  CAS  PubMed  Google Scholar 

  • Sadovy Y, Eklund A-M (1999) Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichtenstein, 1822). US Department Commer. National Oceanic and Atmospheric Administration Technical Report. National Marine Fisheries Service 146, and FAO Fisheries Synopsis 157, Seattle, Washington, p 65

    Google Scholar 

  • Shimose T, Kanaiwa M (2022) Influence of the body color and size on the market value of wild captured coralgroupers (Serranidae, Plectropomus): Implications for fisheries management. Fish Res 248. https://doi.org/10.1016/j.fishres.2021.106223

  • Shinohara Y, Kasagi S, Amiya N, Hoshino Y, Ishii R, Hyodo N, Yamaguchi H, Sato S, Amano M, Takahashi A (2022) Taisho-Sanshoku koi have hardly faded skin and show attenuated melanophore sensitivity to adrenaline and melanin-concentrating hormone. Front Endocrinol 13:994060

    Article  Google Scholar 

  • Shwartz Y, Gonzalez-Celeiro M, Chen C-L, Pasolli HA, Sheu S-H, Fan SM-Y, Shamsi F, Assaad S, Lin ET-Y, Zhang B (2020) Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182(578–593):e519

    Google Scholar 

  • Sköld HN, Norström E, Wallin M (2002) Regulatory control of both microtubule-and actin-dependent fish melanosome movement. Pigment Cell Res 15:357–366

    Article  PubMed  Google Scholar 

  • Sköld HN, Yngsell D, Mubashishir M, Wallin M (2015) Hormonal regulation of colour change in eyes of a cryptic fish. Biology Open 4:206–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Sköld HN, Aspengren S, Cheney KL, Wallin M (2016) Fish chromatophores—from molecular motors to animal behavior. Int Rev Cell Mol Biol 321:171–219

    Article  PubMed  Google Scholar 

  • Sköld HN, Amundsen T, Svensson PA, Mayer I, Bjelvenmark J, Forsgren E (2008) Hormonal regulation of female nuptial coloration in a fish. Horm Behav 54:549–556

    Article  PubMed  Google Scholar 

  • Smith RI (1942) Nervous control of chromatophores in the leech Placobdella parasitica. Physiol Zool 15(4):410–417. https://doi.org/10.2307/30151654

    Article  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (2013) Image processing, analysis and machine vision. Springer

    Google Scholar 

  • Stevens M, Merilaita S (2011) Animal camouflage: mechanisms and function. Cambridge University Press

    Book  Google Scholar 

  • Svensson S, Karlsson J, Grundström N (1989) Melanophores in isolated scales of Labrus berggylta (ascanius): innervation and alpha2-adrenoceptor-mediated pigment aggregation. Comp Biochem Physiol Part C: Comp Pharmacol 93:247–251

    Article  Google Scholar 

  • Swierk L (2022) Color change, encyclopedia of animal cognition and behavior. Springer, pp 1522–1525

    Book  Google Scholar 

  • Townsend CH (1909) Observations on instantaneous changes in color among tropical fishes. Kalkhoff Company

    Google Scholar 

  • Townsend CH (1929) Records of changes in color among fishes. Zoologica 9:321–378

    Google Scholar 

  • Uchida-oka N, Sugimoto M (2001) Norepinephrine induces apoptosis in skin melanophores by attenuating cAMP-PKA Signals Via α2-Adrenoceptors in the Medaka, Oryzias Latipes. Pigment Cell Res 14:356–361

    Article  CAS  PubMed  Google Scholar 

  • Urban J, Štys D, Sergejevová M, Masojídek J (2013) Expertomica Fishgui: comparison of fish skin colour. J Appl Ichthyol 29:172–180

    Article  Google Scholar 

  • Watson A, Siemann L, Hanlon R (2014) Dynamic camouflage by Nassau groupers Epinephelus striatus on a Caribbean coral reef. J Fish Biol 85:1634–1649

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Miyata S, Katayama H (1984) Autoradiographic demonstration of adrenergic innervation to scale melanophores of a teleost fish, Oryzias latipes. J Exp Zool 229:73–80

    Article  Google Scholar 

  • Yamaguchi D, Kasagi S, Shimizu D, Maeda T, Takahashi A, Mizusawa K (2022) A low body-color regulating ability of spotted halibut Verasper variegatus: Evaluation of the roles of melanin-concentrating hormone and proopiomelanocortin systems. Fish Sci 88(3):411–418. https://doi.org/10.1007/s12562-022-01600-6

    Article  CAS  Google Scholar 

  • Yasir I, Qin JG (2009) Effect of light intensity on color performance of false clownfish, Amphiprion ocellaris Cuvier. J World Aquac Soc 40:337–350

    Article  Google Scholar 

  • Zhang B (2020) Hyperactivation of sympathetic nerves drives melanocyte stem cell depletion. Nature 577:676–681. https://doi.org/10.1038/s41586-020-1935-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Xin Wen, Cheng Deng, Shuailong Chen, Xingzhu Qi, Jian L (2021) Analysis of pigment cells difference in body color variation of Plectropomus leopardus. Acta Hydrobiologica Sinica 45(5):1164–1170. https://doi.org/10.7541/2021.2020.1291

    Article  Google Scholar 

Download references

Acknowledgements

We thank technician Xinming Chen of Xiao Deng Fisheries Technology Co., LTD for his help in obtaining and transporting experimental fish. We appreciate Chenchen Shi (PhD candidate) of the College of Ocean and Earth sciences, Xiamen University for her assistance in collecting samples for ultrastructure observation.

Funding

This work was supported by the Key Project of Agriculture in Fujian Province of China (No. 2021N0001, 2021NZ033016).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Nannan Zhao, Shi Xi Chen; material preparation, data collection and analysis: Nannan Zhao, Ke Jiang, Xiaoyu Ge, Jing Huang; methodology: Nannan Zhao, Caiming Wu; data curation: Nannan Zhao; writing — original draft: Nannan Zhao; writing — review and editing: Shi Xi Chen; Resources: Shi Xi Chen; project administration: Shi Xi Chen. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shi Xi Chen.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The Laboratory Animal Management and Ethics Committee of Xiamen University gave its approval to all animal experiments, which were planned to reduce pain and the number of animals utilized.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10695_2024_1300_MOESM1_ESM.pdf

Supplementary file1. Fig. S1 The electrical stimulation device and stimulation process. (A) The JL-A electronic stimulator; (B) Electrode connected to electrical stimulation devices; (C-D) Stimulation site and skin color before and after electrical stimulation (black circle) (PDF 85 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Jiang, K., Ge, X. et al. Neurotransmitter norepinephrine regulates chromatosomes aggregation and the formation of blotches in coral trout Plectropomus leopardus. Fish Physiol Biochem 50, 705–719 (2024). https://doi.org/10.1007/s10695-024-01300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-024-01300-1

Keywords

Navigation