Skip to main content
Log in

Alterations in certain immunological parameters in the skin mucus of the carp, Cirrhinus mrigala, infected with the bacteria, Edwardsiella tarda

  • Research
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The bacterial fish pathogen Edwardsiella tarda causes heavy stock mortality, severely hampering fish production, resulting in great economic loss to the farming industry. The first biological barriers that confer immune protection against pathogen entry are the fish mucosal surfaces. The present study was undertaken to investigate the influence of E. tarda on certain enzymatic and non-enzymatic parameters in the skin mucous secretions of the fish Cirrhinus mrigala using spectrophotometry and zymography. Fish were randomly divided into three groups: control, vehicle control, and infected. A sublethal dose of E. tarda (2.2 × 106 CFU/fish) suspended in 50 μL of PBS was injected intra-peritoneally at 0 day (d). Subsequently, mucus samples were collected at 2 d, 4 d, 6 d and 8 d post-infection. The activities of lysozyme (LYZ), protease (PROT), alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER), superoxide dismutase (SOD), and glutathione S-transferase (GST) decreased significantly in the skin mucus of the challenged fish, indicating the suppressed immune system and decreased antioxidant capacity of C. mrigala to E. tarda infection. Lipid peroxidation (LPO) and total nitrate-nitrite were significantly higher at several time points post-infection, suggesting that physiological functions have been impaired following pathogen challenge. The present findings could be relevant for fish aquaculture and underline the importance of skin mucus not only for assessing fish immune status but also for identifying early warning signals of disease caused by pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdel-Razek N, Awad SM, Abdel-Tawwab M (2019) Effect of dietary purslane (Portulaca oleracea L.) leaves powder on growth, immunostimulation, and protection of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Fish Physiol Biochem 45:1907–1917

    Article  PubMed  CAS  Google Scholar 

  • Abolfathi M, Akbarzadeh A, Hajimoradloo A, Joshaghani HR (2020) Seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout, Oncorhynchus mykiss at different body sizes. Dev Comp Immunol 103:103499

    Article  PubMed  CAS  Google Scholar 

  • Adeyemi JA (2014) Oxidative stress and antioxidant enzymes activities in the African catfish, Clarias gariepinus, experimentally challenged with Escherichia coli and Vibrio fischeri. Fish Physiol Biochem 40:347–354

    Article  PubMed  CAS  Google Scholar 

  • Baldissera MD, Souza CF, Parmeggiani B, Leipnitz G, Verdi CM, Santos RV, Stefani LM, Baldisserotto B (2018) The disturbance of antioxidant/oxidant balance in fish experimentally infected by Aeromonas caviae: relationship with disease pathophysiology. Microb Pathog 122:53–57

    Article  PubMed  CAS  Google Scholar 

  • Bancroft JD (2002) Enzyme histochemistry and its diagnostic applications. Churchill Livingstone, New York

    Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  PubMed  CAS  Google Scholar 

  • Braun JS, Novak R, Gao G, Murray PJ, Shenep JL (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67:3750–3756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351:261–272

    Article  PubMed  CAS  Google Scholar 

  • Cabillon NAR, Lazado CC (2019) Mucosal barrier functions of fish under changing environmental conditions. Fishes 4

  • Campos-Perez JJ, Ward M, Grabowski PS, Ellis AE, Secombes CJ (2000) The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the gram-positive pathogen Renibacterium salmoninarum. Immunology 99:153–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    Article  PubMed  CAS  Google Scholar 

  • Chhonker SK, Rawat D, Koiri RK (2020) Protective and therapeutic effects of sildenafil and tadalafil on aflatoxin B1-induced hepatocellular carcinoma. Mol Cell Biochem 476:1195–1209

    Article  PubMed  Google Scholar 

  • Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743

    Article  PubMed  CAS  Google Scholar 

  • Conforto E, Vilchez-Gomez L, Parrinello D, Parisi MG, Esteban MA, Cammarata M, Guardiola FA (2021) Role of mucosal immune response and histopathological study in European eel (Anguilla anguilla L.) intraperitoneal challenged by Vibrio anguillarum or Tenacibaculum soleae. Fish Shellfish Immunol 114:330–339

    Article  PubMed  CAS  Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

  • Dash S, Das SK, Samal J, Thatoi HN (2018) Epidermal mucus, a major determinant in fish health: a review. Iran J Vet Res 19:72–81

    PubMed  PubMed Central  CAS  Google Scholar 

  • De Freitas SC, Baldissera MD, Verdi CM, Santos RCV, Da Rocha M, da Veiga ML, da Silva AS, Baldisserotto B (2019) Oxidative stress and antioxidant responses in Nile tilapia Oreochromis niloticus experimentally infected by Providencia rettgeri. Microb Pathog 131:164–169

    Article  Google Scholar 

  • Dotta G, de Andrade JIA, Garcia P, Alves Jesus GF, Mourino JLP, Mattos JJ, Dias Bainy AC, Martins ML (2018) Antioxidant enzymes, hematology and histology of spleen in Nile tilapia fed supplemented diet with natural extracts challenged with Aeromonas hydrophila. Fish Shellfish Immunol 79:175–180

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Yi M, Xiao P, Meng L, Li X, Sun G, Liu Y (2015) The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish Shellfish Immunol 44:307–315

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Zhang J, Dong H, Wang Y, Liu Q, Li H (2015) Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge. Fish Shellfish Immunol 46:354–365

    Article  PubMed  CAS  Google Scholar 

  • Espinosa C, Esteban MA, Cuesta A (2019) Dietary administration of PVC and PE microplastics produces histological damage, oxidative stress and immunoregulation in European sea bass (Dicentrarchus labrax L.). Fish Shellfish Immunol 95:574–583

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA (2012) An overview of the immunological defenses in fish skin. ISRN Immunol 2012:1–29

    Article  Google Scholar 

  • Ewing WH, McWhorter AC, Escobar MR, Lubin AH (1965) Edwardsiella, a new genus of Enterobacteriaceae based on a new species, E. tarda. Int J Syst Evol Microbiol 15:33–38

    Google Scholar 

  • Fang FC (2011) Antimicrobial actions of reactive oxygen species. MBio 2:e00141–e00111

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghalambor M, Eslamifar Z, Khoshnood Z (2020) Biochemical characterization of lysozyme extracted from common carp, Cyprinus carpio. Ecopersia 8:125–131

    Google Scholar 

  • Gobi N, Vaseeharan B, Chen JC, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508

    Article  PubMed  CAS  Google Scholar 

  • Guardiola FA, Cuesta A, Arizcun M, Meseguer J, Esteban MA (2014) Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immunol 36:545–551

    Article  PubMed  CAS  Google Scholar 

  • Guardiola FA, Cuesta A, Esteban MA (2016) Using skin mucus to evaluate stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 59:323–330

    Article  PubMed  CAS  Google Scholar 

  • Guardiola FA, Mabrok M, Machado M, Azeredo R, Afonso A, Esteban MA, Costas B (2019) Mucosal and systemic immune responses in Senegalese sole (Solea senegalensis Kaup) bath challenged with Tenacibaculum maritimum: a time-course study. Fish Shellfish Immunol 87:744–754

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  PubMed  CAS  Google Scholar 

  • Hamilton FB (1822) An account of the fishes found in the river Ganges and its branches. Constable, Edinburgh

    Book  Google Scholar 

  • Hardt M, Guo Y, Henderson G, Laine RA (2003) Zymogram with Remazol brilliant blue-labeled Micrococcus lysodeikticus cells for the detection of lysozymes: example of a new lysozyme activity in Formosan termite defense secretions. Anal Biochem 312:73–76

    Article  PubMed  CAS  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS (2010) Herbal supplementation diets on hematology and innate immunity in goldfish against Aeromonas hydrophila. Fish Shellfish Immunol 28:354–361

    Article  PubMed  CAS  Google Scholar 

  • Heesterbeek DAC, Muts RM, van Hensbergen VP, de Saint AP, Wennekes T, Bardoel BW, van Sorge NM, Rooijakkers SHM (2021) Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. PLoS Pathog 17:e1009227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Integrated Taxonomy Information System. Cirrhinus mrigala: taxonomic serial number 163679. Retrieved 2021 from the integrated taxonomic information system (ITIS) web page http://www.itis.gov

  • Jia R, Liu BL, Feng WR, Han C, Huang B, Lei JL (2016) Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish Shellfish Immunol 55:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Kaur A (2015) Variability in antioxidant/detoxification enzymes of Labeo rohita exposed to an azo dye, acid black (AB). Comp Biochem Physiol C Toxicol Pharmacol 167:108–116

    Article  PubMed  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  PubMed  CAS  Google Scholar 

  • Korndat J, Braunbeck T (2001) Alterations of selected metabolic enzymes in fish following long-term exposure to contaminated streams. J Aquat Ecosyst Stress Recov 8:299–318

    Article  Google Scholar 

  • Li L, Dang Y, Shen Y, Xu X, Huang W, Li J (2016) Hematological and immunological plasma assays for grass carp (Ctenopharyngodon idella) infected with Aeromonas hydrophila as an immune model in carp aquaculture. Fish Shellfish Immunol 55:647–653

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Ji K, Ge X, Ren M, Liu B, Xi B, Pan L (2018) Effects of dietary arginine on antioxidant status and immunity involved in AMPK-NO signaling pathway in juvenile blunt snout bream. Fish Shellfish Immunol 78:69–78

    Article  PubMed  CAS  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  PubMed  CAS  Google Scholar 

  • Lykkesfeldt J (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380:50–58

    Article  PubMed  CAS  Google Scholar 

  • Manchenko GP (2003) Handbook of detection of enzymes on electrophoretic gels. Institute of Marine Biology, Russian Academy of Science, CRC Press LLC, BocaRaton, J. Am. Chem. Soc

    Google Scholar 

  • Mathew S, Nair AKK, Anandan R, Gopalan P, Nair NV, Devadasan K (2007) Biochemical studies on changes associated with enzymes of glucose metabolism in white spot syndrome virus (WSSV) infected with Penaeus monodon (Fabricius). Afr J Biotechnol 6

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  PubMed  CAS  Google Scholar 

  • Mistri A, Kumari U, Mittal S, Mittal AK (2020) Gill epithelium of an angler catfish, Chaca chaca (Siluriformes, Chacidae): Enzyme and glycoprotein histochemistry. Anat Histol Embryol 49:67–79

    Article  PubMed  Google Scholar 

  • Mittal AK, Whitear M (1978) A note on cold anaesthesia of poikilotherms. J Fish Biol 13:519–520

    Article  Google Scholar 

  • Mohanty BR, Sahoo PK (2007) Edwardsiellosis in fish: a brief review. J Biosci 32:1331–1344

    Article  PubMed  CAS  Google Scholar 

  • Nigam AK, Kumari U, Mittal S, Mittal AK (2012) Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiol Biochem 38:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Olson N, van der Vliet A (2011) Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 25:125–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parry RM Jr, Chandan RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Proc Soc Exp Biol Med 119:384–386

    Article  PubMed  CAS  Google Scholar 

  • Presbitero A, Mancini E, Brands R, Krzhizhanovskaya VV, Sloot PMA (2018) Supplemented alkaline phosphatase supports the immune response in patients undergoing cardiac surgery: clinical and computational evidence. Front Immunol 9:2342

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  • Ren Y, Zhao H, Su B, Peatman E, Li C (2015) Expression profiling analysis of immune-related genes in channel catfish (Ictalurus punctatus) skin mucus following Flavobacterium columnare challenge. Fish Shellfish Immunol 46:537–542

    Article  PubMed  CAS  Google Scholar 

  • Reverter M, Bontemps TN, Lecchini D, Banaigs B, Sasal P (2018) Biological and ecological roles of external fish mucus: a review. Fishes 3

  • Rodriguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol 25:239–249

    Article  PubMed  CAS  Google Scholar 

  • Sarathi M, Ahmed VI, Venkatesan C, Balasubramanian G, Prabavathy J, Hameed AS (2007) Comparative study on immune response of Fenneropenaeus indicus to Vibrio alginolyticus and white spot syndrome virus. Aquaculture 271:8–20

    Article  CAS  Google Scholar 

  • Sastry KV, Moudgal RP, Mohan J, Tyagi JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 306:79–82

    Article  PubMed  CAS  Google Scholar 

  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ (2012) The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Simora RMC, Li S, Abass NY, Terhune JS, Dunham RA (2020) Cathelicidins enhance protection of channel catfish, Ictalurus punctatus, and channel catfish female symbol x blue catfish, Ictalurus furcatus male symbol hybrid catfish against Edwarsiella ictaluri infection. J Fish Dis 43:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Mistri A, Mittal S, Mittal AK (2020) Alterations in the epidermis of the carp, Labeo rohita (Cyprinidae: Cypriniformes), infected by the bacteria, Aeromonas hydrophila: a scanning electron microscopic, histopathological and immunohistochemical investigation. J Fish Dis 43:941–953

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Verma N, Mistri A, Ranjan B, Nigam AK, Kumari U, Mittal S, Mittal AK (2017) Alterations in the skin of Labeo rohita exposed to an azo dye, Eriochrome black T: a histopathological and enzyme biochemical investigation. Environ Sci Pollut Res Int 24:8671–8681

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol 148:256–263

    Article  PubMed  Google Scholar 

  • Sun Y, Elwell JH, Oberley LW (1988) A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radic Res Commun 5:67–75

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Han L, Chen X, Xie M, Kong W, Wu Z (2019) Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge. Probiotics Antimicrob Proteins 11:545–558

    Article  PubMed  CAS  Google Scholar 

  • Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375

    Article  PubMed  CAS  Google Scholar 

  • Worthington K, Worthington V (2011a) Worthington Enzyme Manual. Worthington Biochemical Corporation http://www.worthington-biochem.com/CTL/default.html. (accessed July2014)

    Google Scholar 

  • Worthington K, Worthington V (2011b) Worthington Enzyme Manual. Worthington Biochemical Corporation http://www.worthington-biochem.com/HPO/default.html, (accessed July2014)

    Google Scholar 

  • Xu T, Zhang X-H (2014) Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture 431:129–135

    Article  Google Scholar 

  • Yin F, Gong H, Ke Q, Li A (2015) Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. Fish Shellfish Immunol 47:344–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Jyoti Singh was supported by Joint CSIR UGC NET-JRF. The authors thank Dr. Neeraj Sood, Principal Scientist and Dr. Ravindra, SRF, National Bureau of Fish Genetic Resources, Lucknow, India, for providing Edwardsiella tarda isolate. The authors also thank Research grant for Faculty (IoE Scheme) under Dev. Scheme No.6031. Financial support by UGC-CAS program of Department of Zoology, BHU is also acknowledged.

Funding

Present work was financially supported by Council for Scientific and Industrial Research, New Delhi, India, and Research grant for Faculty (IoE Scheme) under Dev. Scheme No.6031 and UGC-CAS program of Department of Zoology, BHU, Varanasi, India.

Author information

Authors and Affiliations

Authors

Contributions

Jyoti Singh designed and conducted the experiments and drafted the manuscript. Ayan Srivastava and Ashwini Kumar Nigam assisted in the execution of experiments, and interpretation and statistical analysis of data. Usha Kumari, Swati Mittal and Ajay Kumar Mittal were involved in the critical analysis of data, reading and editing of the manuscript. All authors discussed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Swati Mittal.

Ethics declarations

Ethics approval

All experiments in this study were performed under the guidance of ethical regulation from the institutional animal care and use committee, Banaras Hindu University (Ref No. BHU/DOZ/IAEC/2019-20/013).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Srivastava, A., Nigam, A.K. et al. Alterations in certain immunological parameters in the skin mucus of the carp, Cirrhinus mrigala, infected with the bacteria, Edwardsiella tarda. Fish Physiol Biochem 49, 1303–1320 (2023). https://doi.org/10.1007/s10695-023-01258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01258-6

Keywords

Navigation