Skip to main content
Log in

Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The ADAMs (a disintegrin and metalloproteinase) play regulatory roles in cell adhesion, migration and proteolysis. To explore the origin and evolution of ADAMs, this study identified the homologs of adam10 and adam17 in Lampetra morii and Lampetra japonica. Sequence analysis revealed that they share the same genomic structures with their counterparts in jawed vertebrates. The putative proteins possess conserved motifs, including a furin cut site (RXXR) for precursor processing, an enzyme catalytic motif (HEXGEHXXGXXH) for hydrolysis, and a Ca2+-binding motif (CGNXXXEXGEXCD) for stabilizing protein structure. In addition, a substrate recognition domain is present at the membrane-proximal region of lamprey ADAM17. The cytoplasmic region of lamprey ADAM10 contains a potential threonine phosphorylation site which has been shown to be activated by protein kinase C (PKC) in mammals. Both the adam10 and adam17 genes were constitutively expressed in the brain, kidney, and gills and were differentially regulated in the primary blood leukocytes by lipopolysaccharide (LPS) and pokeweed mitogen (PWM). Adam10 was induced by LPS but not PWM; conversely, adam17 was induced by PWM but not LPS. Taken together, our results suggest that the activation pathways and functions of ADAM10 and ADAM17 are conserved in agnathans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Code availability

Not applicable.

Abbreviations

BCR:

B-cell receptor

CDS:

Complete coding sequence

EGF:

Epidermal growth factor

ErbB:

Epidermal growth factor receptor

ERKs:

Extracellular regulated protein kinases

GSP:

Gene-specific primer

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

MPD:

Membrane-proximal domain

NICD:

Notch intracellular domain

PAMP:

Pathogen-associated molecular pattern

PWM:

Pokeweed mitogen

RACE:

Rapid amplification of cDNA end

TACE:

TNFα-converting enzyme

TCR:

T-cell receptor

TM:

Transmembrane

TNFα:

Tumor necrosis factor alpha

UTR:

Untranslated region

VLR:

Variable lymphocyte receptor

References

  • Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Gomis-Rüth F-X, Stöckler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins.’ FEBS Lett 331:134–140

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19–42

    Article  CAS  PubMed  Google Scholar 

  • Cerretti D (1999) Characterization of the tumour necrosis factor α-converting enzyme, TACE/ADAM17. Biochem Soc Trans 27:219–223

    Article  CAS  PubMed  Google Scholar 

  • Dazzo E, Leonardi E, Belluzzi E, Malacrida S, Vitiello L, Greggio E, Tosatto SC, Nobile C (2016) Secretion-positive LGI1 mutations linked to lateral temporal epilepsy impair binding to ADAM22 and ADAM23 receptors. PLoS Genet 12:e1006376

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreymueller D, Pruessmeyer J, Groth E, Ludwig A (2012) The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 91:472–485

    Article  CAS  PubMed  Google Scholar 

  • Düsterhöft S, Michalek M, Kordowski F, Oldefest M, Sommer A, Röseler J, Reiss K, Grötzinger J, Lorenzen I (2015) Extracellular juxtamembrane segment of ADAM17 interacts with membranes and is essential for its shedding activity. Biochemistry 54:5791–5801

    Article  PubMed  Google Scholar 

  • Evans JP, Schultz RM, Kopf GS (1995) Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) beta. J Cell Sci 108:3267–3278

    Article  CAS  PubMed  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Han BW, Herrin BR, Cooper MD, Wilson IA (2008) Antigen recognition by variable lymphocyte receptors. Science 321:1834–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heng TS, Painter MW, Elpek K, Lukacs-Kornek V, Mauermann N, Turley SJ, Koller D, Kim FS, Wagers AJ, Asinovski N (2008) The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Guo P, McCurley N, Schorpp M, Das S, Boehm T, Cooper MD (2013) Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:435–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwagaki A, Porro M, Pollack M (2000) Influence of synthetic antiendotoxin peptides on lipopolysaccharide (LPS) recognition and LPS-induced proinflammatory cytokine responses by cells expressing membrane-bound CD14. Infect Immun 68:1655–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T (2010) Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol 34:855–865

    Article  CAS  PubMed  Google Scholar 

  • Keightley RG, Cooper MD, Lawton AR (1976) The T cell dependence of B cell differentiation induced by pokeweed mitogen. J Immunol 117:1538–1544

    Article  CAS  PubMed  Google Scholar 

  • Kenny PA (2007) TACE: a new target in epidermal growth factor receptor dependent tumors. Differentiation 75:800–808

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN, Vanderkerken M, Hammad H (2018) The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol 18:745–758

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fan H (2004) Loss of ectodomain shedding due to mutations in the metalloprotease and cysteine-rich/disintegrin domains of the tumor necrosis factor-α converting enzyme (TACE). J Biol Chem 279:27365–27375

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xiao T, Zou J (2021) Fish TNF and TNF receptors. Sci China Life Sci 64:196–220

    Article  CAS  PubMed  Google Scholar 

  • Lu X-J, Chen Q, Yang G-J, Chen J (2015) The TNFα converting enzyme (TACE) from ayu (Plecoglossus altivelis) exhibits TNFα shedding activity. Mol Immunol 63:497–504

    Article  CAS  PubMed  Google Scholar 

  • Magee CN, Riella LV (2016) Notch and its ligands in alloimmunity and rejection. Curr Opin Organ Transplant 21:15–21

    Article  CAS  PubMed  Google Scholar 

  • Moss ML, Minond D (2017) Recent advances in ADAM17 research: a promising target for cancer and inflammation. Mediat Inflamm 2017:9673537

    Article  Google Scholar 

  • Moss ML, Bomar M, Liu Q, Sage H, Dempsey P, Lenhart PM, Gillispie PA, Stoeck A, Wildeboer D, Bartsch JW (2007) The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J Biol Chem 282:35712–35721

    Article  CAS  PubMed  Google Scholar 

  • Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20:164–174

    Article  CAS  PubMed  Google Scholar 

  • Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease”(ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    Article  CAS  PubMed  Google Scholar 

  • Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20

    Article  CAS  PubMed  Google Scholar 

  • Saftig P, Reiss K (2011) The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90:527–535

    Article  CAS  PubMed  Google Scholar 

  • Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387

    Article  CAS  PubMed  Google Scholar 

  • Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  CAS  PubMed  Google Scholar 

  • Sepulcre MP, Alcaraz-Pérez F, López-Muñoz A, Roca FJ, Meseguer J, Cayuela ML, Mulero V (2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-κB activation. J Immunol 182:1836–1845

    Article  CAS  PubMed  Google Scholar 

  • Soond SM, Everson B, Riches DW, Murphy G (2005) ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci 118:2371–2380

    Article  CAS  PubMed  Google Scholar 

  • Souza J, Lisboa A, Santos T, Andrade M, Neves V, Teles-Souza J, Jesus H, Bezerra T, Falcão V, Oliveira R (2020) The evolution of ADAM gene family in eukaryotes. Genomics 112:3108–3116

    Article  CAS  PubMed  Google Scholar 

  • Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H (2019) Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47:W270–W275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Qin Y, Liu D, Wang B, Jia Z, Wang J, Gao Q, Zou J, Pang Y (2021) The evolution and functional characterization of CXC chemokines and receptors in lamprey. Dev Comp Immunol 116:103905

    Article  CAS  PubMed  Google Scholar 

  • Takeda S (2016) ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins 8:155

    Article  PubMed  PubMed Central  Google Scholar 

  • van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284:31018–31027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetzel S, Seipold L, Saftig P (2017) The metalloproteinase ADAM10: a useful therapeutic target? Biochim Biophys Acta (BBA)-Mol Cell Res 186:20–20

    Google Scholar 

  • Yang X, Si-Wei Z, Qing-Wei L (2016) Lamprey: a model for vertebrate evolutionary research. Zool Res 37:263

    CAS  Google Scholar 

Download references

Funding

This work is funded by the National Key R&D Program of China (Grant No. 2018YFD0900302) and the National Natural Science Foundation of China (Grant Nos. 32030112 and U21A20268).

Author information

Authors and Affiliations

Authors

Contributions

Kaizheng Wu, Jing Xu: investigation, methodology, data curation, and writing—original draft. Zhao Jia, Junya Wang, Zixuan Wang, Jianhua Feng, Xiaozhen Zhu, Qin Liu, Bangjie Wang, Mingjie Li: investigation and methodology. Yue Pang: supervision, writing—review and editing. Jun Zou: conceptualization, funding acquisition, project administration, supervision, writing—review and editing.

Corresponding authors

Correspondence to Yue Pang or Jun Zou.

Ethics declarations

Ethics approval

Experimental procedures were approved by the Animal Welfare and Research Ethics Committee of the Liaoning Normal University and the Institute of Dalian Medical University (Permit number: SYXK2004-0029).

Consent to participate

Not applicable.

Consent for publication

All authors have approved the manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Xu, J., Jia, Z. et al. Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey. Fish Physiol Biochem 49, 321–334 (2023). https://doi.org/10.1007/s10695-023-01184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01184-7

Keywords

Navigation