Skip to main content
Log in

Effects of acute low-salinity stress on osmoregulation, antioxidant capacity, and growth of the black sea bream (Acanthopagrus schlegelii)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The black sea bream (Acanthopagrus schlegelii) is an important marine economic fish found on the southeast coast of China. Because of the frequent climate change, the salinity of the waters inhabited by A. schlegelii often decreases, which interferes with the fish’s physiological homeostasis. The isotonic salinity of teleosts are usually lower than that of seawater, so maximum economic benefits cannot be obtained from conventional mariculture. This study was performed to preliminarily clarify the osmotic regulation and antioxidant mechanism of juvenile A. schlegelii and find an appropriate culture salinity value. We selected 5 psu, 10 psu, 15 psu, and 25 psu (control) to conduct physiological experiments for 96 h and growth experiments for 60 days. We found that the juvenile A. schlegelii could adjust their osmotic pressure within 12 h. The growth hormone and cortisol were found to be seawater-acclimating hormones, whereas prolactin was freshwater-acclimating hormone. The activity and mRNA expression of Na+/K+-ATPase showed a U-shaped trend with the decrease of in salinity at 12–96 h. Serum ion concentration and osmotic pressure remained at a relatively stable level after being actively adjusted from 6 to 12 h. At 96 h, the osmotic pressure of the serum isotonic point of juvenile A. schlegelii was approximately equal to that of water with 14.94 salinity. The number and volume of Cl-secreting cells in the gills decreased. The glomeruli were more developed and structurally sound, with the renal tubules increasing in diameter and the medial brush border being more developed; this may indicate a decrease in salt secretion and an enhanced reabsorption function in the low salinity groups. The activities of superoxide dismutase and catalase and concentration of malondialdehyde were the lowest in the 15 psu group. In addition, the culture conditions of the 15 psu group improved the feed conversion rate without significant differences in weight gain when compared with the control group. Our results show that 15 psu salinity may be the best parameter for obtaining the maximum economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support to the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

PSU:

Practical salinity units

FW:

Freshwater

SW:

Seawater

COR:

Cortisol

NKA:

Na+/K+-ATPase

MRCs:

Mitochondrial-rich cells

GH:

Growth hormone

PRL:

Prolactin

ROS:

Reactive oxygen species

MDA:

Malonyldialdehyde

SOD:

Superoxide dismutase

CAT:

Catalase

WGR:

Weight gain rate

FR:

Feed rate

FCE:

Feed conversion rate

MRC:

Mitochondria rich cell

PVC:

Pavement cell

PiC:

Pillar cell

BC:

Blood cell

MC:

Mucous cells

G:

Glomerulus

P:

Proximal segment

DSM:

Distal segment

CS:

Collecting segment

CV:

Central veins

LC:

Liver cell

LCC:

Liver cell cord

IV:

Interlobular vein

V:

Vacuole

References

  • Abou Anni IS, Bianchini A, Barcarolli IF, Varela Junior AS, Robaldo RB, Tesser MB, Sampaio LA (2016) Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832. Aquaculture 455:63–72. https://doi.org/10.1016/j.aquaculture.2016.01.010

    Article  CAS  Google Scholar 

  • Arunachalam S, Reddy SR (1979) Food intake, growth, food conversion, and body composition of catfish exposed to different salinities. Aquaculture 16:163–171. https://doi.org/10.1016/0044-8486(79)90147-9

    Article  Google Scholar 

  • Bœuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol c: Toxicol Pharmacol 130:411–423. https://doi.org/10.1016/S1532-0456(01)00268-X

    Article  Google Scholar 

  • Boutet I, Lorin-Nebel C, De Lorgeril J, Guinand B (2007) Molecular characterisation of prolactin and analysis of extrapituitary expression in the European sea bass Dicentrarchus labrax under various salinity conditions. Comp Biochem Physiol d: Genomics Proteomics 2:74–83. https://doi.org/10.1016/j.cbd.2006.12.002

    Article  CAS  Google Scholar 

  • Breves J, P., Watanabe, Soichi, Kaneko, Toyoji, Hirano, Tetsuya & Grau, (2010) Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl-cotransporter in hypophysectomized Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 68:R702–R710

    Article  Google Scholar 

  • Breves JP, Hasegawa S, Yoshioka M, Fox BK, Davis LK, Lerner DT, Takei Y, Hirano T, Grau EG (2010) Acute salinity challenges in Mozambique and Nile tilapia: differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen Comp Endocrinol 167:135–142. https://doi.org/10.1016/j.ygcen.2010.01.022

    Article  CAS  Google Scholar 

  • Chang C-H, Mayer M, Rivera-Ingraham G, Blondeau-Bidet E, Wu W-Y, Lorin-Nebel C, Lee T-H (2021) Effects of temperature and salinity on antioxidant responses in livers of temperate (Dicentrarchus labrax) and tropical (Chanos Chanos) marine euryhaline fish. J Therm Biol 99:103016. https://doi.org/10.1016/j.jtherbio.2021.103016

    Article  CAS  Google Scholar 

  • Chasiotis H, Kelly SP (2011) Effect of cortisol on permeability and tight junction protein transcript abundance in primary cultured gill epithelia from stenohaline goldfish and euryhaline trout. Gen Comp Endocrinol 172:494–504. https://doi.org/10.1016/j.ygcen.2011.04.023

    Article  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005) Cloning and characterization of sea bream Na+-K+-ATPase α and β subunit genes: in vitro effects of hormones on transcriptional and translational expression. BBRC 331:1229–1238. https://doi.org/10.1016/j.bbrc.2005.04.038

    Article  CAS  Google Scholar 

  • Deane EE, Kelly SP, Luk J, Woo N (2002) Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4:193–205

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(97):177

    Google Scholar 

  • Farshadian R, Salati AP, Keyvanshokooh S, Pasha-Zanoosi H (2018) Physiological responses of Yellowfin seabream (Acanthopagrus latus) to acute salinity challenge. Mar Freshwat Behav Physiol 51:313–325

    Article  CAS  Google Scholar 

  • Fielder DS, Allan GL, Pepperall D, Pankhurst PM (2007) The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture 272:656–666. https://doi.org/10.1016/j.aquaculture.2007.08.043

    Article  CAS  Google Scholar 

  • Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Qsrv 84:1–6. https://doi.org/10.1016/j.quascirev.2013.11.002

    Article  Google Scholar 

  • Hossain F, Islam SMM, Islam MS, Shahjahan M (2022) Behavioral and histo-pathological indices of striped catfish (Pangasionodon hypophthalmus) exposed to different salinities. Aquacu Reports 23:101038. https://doi.org/10.1016/j.aqrep.2022.101038

    Article  Google Scholar 

  • Imsland AK, Björnsson BT, Gunnarsson S, Foss A, Stefansson SO (2007) Temperature and salinity effects on plasma insulin-like growth factor-I concentrations and growth in juvenile turbot (Scophthalmus maximus). Aquaculture 271:546–552. https://doi.org/10.1016/j.aquaculture.2007.07.007

    Article  CAS  Google Scholar 

  • Jarvis PL, Ballantyne JS (2003) Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture 219:891–909. https://doi.org/10.1016/S0044-8486(03)00063-2

    Article  CAS  Google Scholar 

  • Jin M, Pan T, Cheng X, Zhu TT, Sun P, Zhou F, Ding X, Zhou Q (2019) Effects of supplemental dietary l-carnitine and bile acids on growth performance, antioxidant and immune ability, histopathological changes and inflammatory response in juvenile black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture 504:199–209. https://doi.org/10.1016/j.aquaculture.2019.01.063

    Article  CAS  Google Scholar 

  • Kato A, Doi H, Nakada T, Sakai H, Hirose S (2005) Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC Physiol 5:18

    Article  Google Scholar 

  • Kelly SP, Wood CM (2002) Cultured gill epithelia from freshwater tilapia (Oreochromis niloticus): effect of cortisol and homologous serum supplements from stressed and unstressed fish. J Membr Biol 190:29–42

    Article  CAS  Google Scholar 

  • Kueltz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. https://doi.org/10.1242/jeb.118695

    Article  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín Del Río MP, Soengas JL, Mancera JM (2005) Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: Implications for osmoregulation and energy metabolism. Aquaculture 250:849–861. https://doi.org/10.1016/j.aquaculture.2005.05.021

    Article  CAS  Google Scholar 

  • Lee TH, Hwang PP, Shieh YE, Lin CH (2000) The relationship between `deep-hole’ mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol Biochem 23:133–140

    Article  CAS  Google Scholar 

  • Li X, Shen Y, Bao Y, Wu Z, Yang B, Jiao L, Zhang C, Tocher DR, Zhou Q, Jin M (2022) Physiological responses and adaptive strategies to acute low-salinity environmental stress of the euryhaline marine fish black seabream (Acanthopagrus schlegelii). Aquaculture 554:738117. https://doi.org/10.1016/j.aquaculture.2022.738117

    Article  CAS  Google Scholar 

  • Lin Z, Lei J, Liu B, Hong W, Zhu J (2013) Effects of salinities on growth and flesh quality of juvenile turbot( Scophthalmus maximus). J Fish China 37:1535

    Article  Google Scholar 

  • Madsen SS (1990) The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen Comp Endocrinol 79:1–11. https://doi.org/10.1016/0016-6480(90)90082-W

    Article  CAS  Google Scholar 

  • Mancera JM, Mccormick SD (1998) Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the Euryhaline TeleostFundulus heteroclitus. Gen Comp Endocrinol 111:103–112. https://doi.org/10.1006/gcen.1998.7086

    Article  CAS  Google Scholar 

  • Martinez-Palacios CA, Ross LG, Rosado-Vallado M (1990) The effects of salinity on the survival and growth of juvenile Cichlasoma urophthalmus. Aquaculture 91:65–75. https://doi.org/10.1016/0044-8486(90)90177-O

    Article  Google Scholar 

  • Mccormick & S., D. (2001) Endocrine Control of Osmoregulation in Teleost Fish. Am Zool 41:781–794

    Google Scholar 

  • Mcenroe M, Cech JJ (1985) Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fishes 14:23–30

    Article  Google Scholar 

  • Nordlie FG (2009) Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review. Rev Fish Biol Fish 19:481–564

    Article  Google Scholar 

  • Partridge GJ, Jenkins GI (2002) The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 210:219–230. https://doi.org/10.1016/S0044-8486(01)00817-1

    Article  Google Scholar 

  • Piermarini PM, Evans DH (2000) Effects of environmental salinity on Na(+)/K(+)-ATPase in the gills and rectal gland of a euryhaline elasmobranch (Dasyatis sabina). J Exp Biol 203:2957–2966

    Article  CAS  Google Scholar 

  • Rhee J-S, Kim R-O, Seo JS, Lee J, Lee Y-M, Lee J-S (2010) Effects of salinity and endocrine-disrupting chemicals on expression of prolactin and prolactin receptor genes in the euryhaline hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol c: Toxicol Pharmacol 152:413–423. https://doi.org/10.1016/j.cbpc.2010.07.001

    Article  CAS  Google Scholar 

  • Sakamoto T, Mccormick SD (2006) Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147:24–30. https://doi.org/10.1016/j.ygcen.2005.10.008

    Article  CAS  Google Scholar 

  • Sakuragui MM, Sanches JR, Fernandes MN (2003) Gill chloride cell proliferation and respiratory responses to hypoxia of the neotropical erythrinid fishHoplias malabaricus. J Comp Physiol [b] 173:309–317

    Article  CAS  Google Scholar 

  • Sangiao-Alvarellos S, Arjona FJ, Míguez JM, Martín Del Río MP, Soengas JL, Mancera JM (2006) Growth hormone and prolactin actions on osmoregulation and energy metabolism of gilthead sea bream (Sparus auratus). Comp Biochem Physiol a: Mol Integr Physiol 144:491–500. https://doi.org/10.1016/j.cbpa.2006.04.015

    Article  CAS  Google Scholar 

  • Seale AP, Stagg JJ, Yamaguchi Y, Breves JP, Soma S, Watanabe S, Kaneko T, Cnaani A, Harpaz S, Lerner DT, Grau EG (2014) Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine. Gen Comp Endocrinol 206:146–154. https://doi.org/10.1016/j.ygcen.2014.07.020

    Article  CAS  Google Scholar 

  • Seidelin M, Madsen SS (1997) Prolactin antagonizes the seawater-adaptive effect of cortisol and growth hormone in anadromous brown trout (Salmo trutta). Zool Sci 14:249–256

    Article  CAS  Google Scholar 

  • Shao Q, Ma J, Xu Z, Hu W, Xu J, Xie S (2008) Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture 277:92–100. https://doi.org/10.1016/j.aquaculture.2008.01.029

    Article  CAS  Google Scholar 

  • Sherwani FA, Parwez I (2008) Plasma thyroxine and cortisol profiles and gill and kidney Na+/K+-ATPase and SDH activities during acclimation of the catfish Heteropneustes fossilis (bloch) to higher salinity, with special reference to the effects of exogenous cortisol on hypo-osmoregulatory ability of the catfish. Zool Sci 25:164

    Article  CAS  Google Scholar 

  • Sudo R, Suetake H, Suzuki Y, Aoyama J, Tsukamoto K (2013) Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: the effect of salinity, silvering and seasonal change. Comp Biochem Physiol a: Mol Integr Physiol 164:10–16. https://doi.org/10.1016/j.cbpa.2012.09.019

    Article  CAS  Google Scholar 

  • Tahir D, Shariff M, Syukri F, Yusoff FM (2018) Serum cortisol level and survival rate of juvenileEpinephelus fuscoguttatusfollowing exposure to different salinities. Veterinary World 11:327–331

    Article  CAS  Google Scholar 

  • Tipsmark CK, Madsen SS (2009) Distinct hormonal regulation of Na+, K+-atpase genes in the gill of Atlantic salmon (Salmo salar L.). J Endocrinol 203:301–310

    Article  CAS  Google Scholar 

  • Tipsmark CK, Madsen SS, Borski RJ (2004) Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J Exp Zool Part Ecol Integr Physiol 301A:979–991

    Article  CAS  Google Scholar 

  • Viviana L, Fernanda BI, André SL, Adalto B (2015) Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae). Neotrop Ichthyol 13:447–452

    Article  Google Scholar 

  • Wijk E, Rintoul SR (2014) Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. GeoRL 41:1657–1664

    Google Scholar 

  • Winston GW, Giulio R (1991) Prooxidant and Antioxidant Mechanisms in Aquatic Organisms 19:137–161

    CAS  Google Scholar 

  • Wu L, Liang H, Hamunjo CMK, Ge X, Ji K, Yu H, Huang D, Xu H, Ren M (2021) Culture salinity alters dietary protein requirement, whole body composition and nutrients metabolism related genes expression in juvenile Genetically Improved Farmed Tilapia (GIFT) (Oreochromis niloticus). Aquaculture 531:735961. https://doi.org/10.1016/j.aquaculture.2020.735961

    Article  CAS  Google Scholar 

  • Yada T, Mccormick SD, Hyodo S (2012) Effects of environmental salinity, biopsy, and GH and IGF-I administration on the expression of immune and osmoregulatory genes in the gills of Atlantic salmon (Salmo salar). Aquaculture 362–363:177–183. https://doi.org/10.1016/j.aquaculture.2010.12.029

    Article  CAS  Google Scholar 

  • Yan M, Li Z, Xiong B, Zhu J (2010) Effects of salinity on food intake, growth, and survival of pufferfish (Fugu obscurus). J Appl Ichthyol 20:146–149

    Article  Google Scholar 

  • Zhu H, Liu Z, Gao F, Lu M, Liu Y, Su H, Ma D, Ke X, Wang M, Cao J, Yi M (2018) Characterization and expression of Na+/K+-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comp Biochem Physiol a: Mol Integr Physiol 224:1–10. https://doi.org/10.1016/j.cbpa.2018.05.017

    Article  CAS  Google Scholar 

  • Chang, C.Y., Tang, C.H., Hsin, Y.H., Lai, H.T. & Lee, T.H. (2014) FXYD2c plays a potential role in modulating Na+/K+-ATPase activity in HK-2 cells upon hypertonic challenge. J Membr Biol, 247.

  • Dawood, M.a.O., Noreldin, A.E. & Sewilam, H. (2021) Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. Ecotoxicol Environ Saf, 220. https://doi.org/10.1016/j.ecoenv.2021.112412

  • El-Leithy, A., Hemeda, S.A., Naby, W., Nahas, A. & Helmy, Z.A. (2019) Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress- and immune-related genes. Fish Physiol Biochem.

  • Liu, Z., Ma, A., Yuan, C., Zhao, T., Chang, H. & Zhang, J. (2021) Transcriptome analysis of liver lipid metabolism disorders of the turbot Scophthalmus maximus in response to low salinity stress. Aquaculture, 534. https://doi.org/10.1016/j.aquaculture.2020.736273

  • Mccormick, M. (1998) Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology.

  • Mccormick, S.D. (2011) Hormonal control of metabolism and ionic regulation | The Hormonal Control of Osmoregulation in Teleost Fish. Encyclopedia of Fish Physiology: 1466–1473.

  • Moorman, B.P. (2014) The effects of rearing Mozambique tilapia in a tidally-changing salinity on osmoregulation and growth. Dissertations & Theses - Gradworks.

  • Perevedentsev, Y.P. (2019) Current climate change and its effects. Proceedings of Voronezh State University Series: Geography Geoecology: 98–102.

  • Sakuragui, M.M., Valentim, M.L. & Fernandes, M.N. (2007) 16.P14. Chloride cell density in the gills of the erythrinid fish, Hoplias malabaricus, after exposure to deionized water and hypoxia. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 148: 0–0.

  • Shepherd, Brian, S., Drennon, Katherine, Johnson, Jaime, Nichols, Joel & W. (2005) Salinity acclimation affects the somatotropic axis in rainbow trout. Am J Physiol Regul Integr Comp Physiol, 57: R1385-R1395.

  • Shui, C., Shi, Y., Hua, X., Zhang, Z., Zhang, H., Lu, G. & Xie, Y. (2018) Serum osmolality and ions,and gill Na^(+)/K^(+)-ATPase of spottedtail goby Synechogobius ommaturus(R.)in response to acute salinity changes. Aquaculture and Fisheries, 3: 5.

  • Stephen, D. & Mccormick (2001) Endocrine control of osmoregulation in teleost fish. Amer Zool.

  • Sumpter, J.P. (1997) The endocrinology of stress. Fish Stress & Health in Aquaculture.

  • Tatsuya, Sakamoto, And, Tomohiro, Kozaka, And, Akiyoshi, Takahashi, And & Hiroshi (2001) Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture.

  • Tian, L., Tan, P., Yang, L., Zhu, W. & Xu, D. (2020) Effects of salinity on the growth, plasma ion concentrations, osmoregulation, non-specific immunity, and intestinal microbiota of the yellow drum (Nibea albiflora). Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735470

  • Tian, Y., Wen, H., Qi, X., Zhang, X., Liu, S., Li, B., Sun, Y., Li, J., He, F., Yang, W. & Li, Y. (2019) Characterization of full-length transcriptome sequences and splice variants of Lateolabrax maculatus by single-molecule long-read sequencing and their involvement in salinity regulation. FRONTIERS IN GENETICS, 10. https://doi.org/10.3389/fgene.2019.01126

  • Zoology, R.I. (2013) Fish Physiology: Euryhaline Fishes. Fish Physiol.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31872586), the Major Project of Science, Technology and Innovation 2025 In Ningbo City (2021Z003), and by K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Yibo Zhang and Shun Zhang performed the experiments and analyzed the data. Yibo Zhang wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shanliang Xu or Danli Wang.

Ethics declarations

Ethics approval

The principles and procedures of the sampling methods were in strict accordance with the requirements of the Governing Regulation for the Use of Experimental Animals in Zhejiang Province (Zhejiang Provincial Government Order No. 263, released on 17 August 2009, effective from 1 October 2010) and approved by the Animal Care and Use Committee of Ningbo University.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, S., Xu, S. et al. Effects of acute low-salinity stress on osmoregulation, antioxidant capacity, and growth of the black sea bream (Acanthopagrus schlegelii). Fish Physiol Biochem 48, 1599–1617 (2022). https://doi.org/10.1007/s10695-022-01144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01144-7

Keywords

Navigation