Skip to main content
Log in

Lipid-related metabolism during zebrafish embryogenesis under unbalanced copper homeostasis

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Copper (Cu) is an essential trace element, playing an important role in lipid metabolism, and its transporters ATP7A and ATP7B, as Cu-transporting P-type ATPases, are involved in maintaining the Cu homeostasis in cells. Numerous studies in mammals have shown that Cu homeostasis and lipid metabolism are closely related, but studies on the link between the effects of excess Cu, ATP7A, and ATP7B on lipid metabolism during vertebrate embryogenesis are scarce. In this study, zebrafish disease models with Cu overload and ATP7A and ATP7B inactivation, respectively, were used to study the lipid metabolism-related differentially expressed genes (DEGs) which were enriched in the models. The dynamic and spatiotemporal expressions of the DEGs in WTs, atp7a−/−, and atp7b−/− mutants with or without Cu stress were unveiled in this study and they mostly distributed in brain at 24 hpf then in liver and intestine at 96 hpf, suggesting their potential roles in lipid and glycogen metabolism to apply energy for normal development in zebrafish. Meanwhile, the correlation analysis for the DEGs among the three groups unveiled that most of the DEGs were involved in the glyceride metabolism pathway. This is the first report to establish the relationship between atp7a and atp7b with Cu-stimulated intestinal and liver lipid metabolism during fish embryogenesis, and this study will provide a theoretical basis for fish embryonic development and lipid metabolism disorders under unbalanced copper homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ackerman CM, Weber PK, Xiao T, Bao T, Kuo TJ, Zhang E, Jennifer PR, Chang CJ (2018) Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease. Metallomics 10:474–485

    Article  CAS  PubMed  Google Scholar 

  • Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369:397–408

    Article  CAS  PubMed  Google Scholar 

  • Antonio Guardiola F, Cuesta A, Meseguer J, Angeles Esteban M (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13:1541–1560

    Article  Google Scholar 

  • Baldini SF, Steenackers A, Stichelen OV, Mir AM, Mortuaire M, Lefebvre T, Guinez C (2016) Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation. Biochem Biophys Res Commun 478:942–948

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (2015) Copper-2 ingestion, plus increased meat eating leading to increased copper absorption, are major factors behind the current epidemic of Alzheimer’s disease. Nutrients 7:10053–10064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer GJ, Kanzer SH, Zimmerman EA, Celmins DF, Heckman SM, Dick R (2010) Copper and ceruloplasmin abnormalities in Alzheimer’s disease. Ame J Alzheimers Dis and Other Dementias 25:490–497

    Article  Google Scholar 

  • Chen QL, Luo Z, Liu X, Song YF, Zhao YH (2012) Effects of waterborne chronic copper exposure on hepatic lipid metabolism and metal-element composition in Synechogobius hasta. Arch Environ Contam Toxicol 64:301–315

    Article  PubMed  Google Scholar 

  • Chen MY, Luo Y, Xu JP, Chang MX, Liu JX (2019) Copper regulates the susceptibility of zebrafish larvae to inflammatory stimuli by controlling neutrophil/macrophage survival. Front Immunol 10:2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Chao DL, Rocha L, Kolar M, Nguyen Huu VA, Krawczyk M, Dasyani M, Wang T, Jafari M, Jabari M, Ross KD, Saghatelian A, Hamilton BA, Zhang K, Skowronska-Krawczyk D (2020) The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell 19:e13100

  • Dasyani M, Gao F, Xu Q, Fossan DV, Chao DL (2020) Elovl2 is required for robust visual function in zebrafish. Cells 9:2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine SL, Mercer J (2007a) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463:149–167

    Article  PubMed  Google Scholar 

  • Fortin C, Couillard Y, Campbell B (2010) Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat Geochem 16:151–172

    Article  CAS  Google Scholar 

  • Fujimoto N, Akiyama M, Satoh Y, Tajima S (2021) Interaction of galectin-7 with HMGCS1 in vitro may facilitate cholesterol deposition in cultured keratinocytes. J Investig Dermatol 142:539–548

    Article  PubMed  Google Scholar 

  • Gutiérrez-García R, Pozo TA, Suazo M, CambiazoGonzaLez VM (2013) Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins. Biometals 26:1033–1040

    Article  PubMed  Google Scholar 

  • Halfdanarson TR, Kumar N, Hogan WJ, Murray JA (2009) Copper deficiency in celiac disease. J Clin Gastroenterol 43:162–164

    Article  PubMed  Google Scholar 

  • Huster D (2014) Structural and metabolic changes in Atp7b−/− mouse liver and potential for new interventions in Wilson’s disease. Ann N Y Acad Sci 1315:37–44

    Article  CAS  PubMed  Google Scholar 

  • Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  CAS  PubMed  Google Scholar 

  • Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ (2020) Lipids and Alzheimer’s disease. Int J Mol Sci 21:1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic-development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A (2017) Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Elsevier Sponsored Documents 47:831–832

    Google Scholar 

  • Krishnamoorthy L, Cotruvo JA Jr, Chan J, Kaluarachchi H, Muchenditsi A, Pendyala VS, Jia S, Aron AT, Ackerman CM, Vander Wal MN, Guan T, Smaga LP, Farhi SL, New EJ, Lutsenko S, Chang CJ (2016) Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol 12:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang J, Wang L, Feng G, Zhang K (2020) Retraction for Li et al., Impaired lipid metabolism by age-dependent DNA methylation alterations accelerates aging. Proc Natl Acad Sci USA 117:8660

  • Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N (1998) Copper transport. Am J Clin Nutr 67:965S-971S

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Zhang D, Xie X, Ouyang G, Liu X, Sun Y, Xiao W (2013) Eaf1 and Eaf2 negatively regulate canonical Wnt/beta-catenin signaling. Development 140:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ye D, Wang H, He M, Sun Y (2020) Elovl2 but not Elovl5 is essential for the biosynthesis of docosahexaenoic acid (DHA) in zebrafish: insight from a comparative gene knockout study. Mar Biotechnol 22:613–619

    Article  Google Scholar 

  • Llanos RM, Mercer JFB (2002) The molecular basis of copper homeostasis and copper-related disorders. DNA Cell Biol 21:259–270

    Article  CAS  PubMed  Google Scholar 

  • Loennerdal B (2008) Intestinal regulation of copper homeostasis: a developmental perspective. Am J Clin Nutr 88:846S-850S

    Article  Google Scholar 

  • Logan S, Agbaga MP, Chan M, Brush RS, Anderson RE (2014) Endoplasmic reticulum microenvironment and conserved histidines govern ELOVL4 fatty acid elongase activity. J Lipid Res 55(4):698–708

  • Makokha VA, Qi Y, Shen Y, Wang J (2016) Concentrations, distribution, and ecological risk assessment of heavy metals in the East Dongting and Honghu Lake, China. Exposure and Health 8:31–41

    Article  CAS  Google Scholar 

  • Mcgeer JC, Szebedinszky C, Mcdonald DG, Wood CM (2000) Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquat Toxicol 50:245–256

    Article  CAS  PubMed  Google Scholar 

  • Mi X, Li Z, Yan J, Li Y, Zheng J, Zhuang Z, Yang W, Gong L, Shi J (2020) Activation of HIF-1 signaling ameliorates liver steatosis in zebrafish atp7b deficiency (Wilson’s disease) models. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1866(10):165842

  • Monroig Ó, Rotllant J, Sánchez E, Cerdá-Reverter J, Tocher DR (2009) Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. Bba Molecul & Cell Biol Lipids 1791:1093–1101

    Article  CAS  Google Scholar 

  • Morrell A, Tallino S, Yu L, Burkhead JL (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehrvik H, Thiele DJ, New York Acad S (2014) How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann NY Acad Sci 1314:32–41

  • Pan YaXiong, Mei-Qing Z, Dan-Dan Li, Yi-Huan Xu, Kun Wu (2018) SREBP-1 and LXRα pathways mediated Cu-induced hepatic lipid metabolism in zebrafish Danio rerio. Chemosphere 215:370–379

    Article  PubMed  Google Scholar 

  • Pauter AM, Olsson P, Asadi A, Herslof B, Jacobsson A (2014) Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 55:718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeil SA, Lynn DJ (1999) Wilson’s disease – copper unfettered. J Clin Gastroenterol 29:22–31

    Article  CAS  PubMed  Google Scholar 

  • Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, Dadon D, Granot Z, Ben-Hur V, White P (2011) Control of pancreatic β cell regeneration by glucose metabolism – ScienceDirect. Cell Metab 13:440–449

    Article  CAS  PubMed  Google Scholar 

  • Ravia JJ, Stephen RM, Ghishan FK, Collins JF (2005) Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J Biol Chem 280:36221–36227

    Article  CAS  PubMed  Google Scholar 

  • Sant KE, Timme-Laragy AR (2018) Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo. Current Environmental Health Reports 5(1):125–133

  • Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H (2013) Impaired epidermal permeability barrier in mice lacking Elovl1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol 33:2787–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan W, Xia X, Lin C, Xi C, Zhou C (2010) Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). J Hazard Mater 179:860–868

    Article  Google Scholar 

  • Svensson PA, Englund MCO, Markstrom E, Ohlsson BG, Jernas M, Billig H, Torgerson JS, Wiklund O, Carlsson LMS, Carlsson B (2003) Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis 169:71–76

    Article  CAS  PubMed  Google Scholar 

  • Swa B, Ch A, Xw C, Yw A, Min YD, Hx D, Ssd E, Kw A, Qt A, Sx F (2021) Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: glycerolipidomic and transcriptomic approach. J Hazard Mater 423:5

    Google Scholar 

  • Tai ZP, Guan PP, Wang ZY, Li LY, Zhang T, Li GL, Liu JX (2019) Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics 9:9

    Google Scholar 

  • Tama B, Nms C, Vm C (2020) Lipid and energy metabolism in Wilson disease. Liver Research 4:10

    Google Scholar 

  • Tan SH, Chung HH, Shu-Chien AC (2010) Distinct developmental expression of two elongase family members in zebrafish. Biochem Biophys Res Commun 393:397–403

    Article  CAS  PubMed  Google Scholar 

  • Tao C, Wang Y, Zhao Y, Pan J, Fan Y, Liang X, Cao C, Zhao J, Petris MJ, Li K, Wang Y (2019) Adipocyte-specific disruption of ATPase copper transporting alpha in mice accelerates lipoatrophy. Diabetologia 62:2340–2353

    Article  CAS  PubMed  Google Scholar 

  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51:1101–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Qin Z (2015) Counteract of bone marrow of blotchy mice against the increases of plasma copper levels induced by high-fat diets in LDLR−/− mice. J Trace Elem Med Biol 31:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SSZ, Noordin MM, Rahman SOA, Haron J (2000) Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet Hum Toxicol 42:261–264

    CAS  PubMed  Google Scholar 

  • Zhang T, Xu L, Wu J-J, Wang W-M, Mei J, Ma X-F, Liu J-X (2015) Transcriptional responses and mechanisms of copper-induced dysfunctional locomotor behavior in zebrafish embryos. Toxicol Sci 148:299–310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang R, Sun H, Chen Q, Yu X, Zhang T, Yi M, Liu J-X (2018) Copper inhibits hatching of fish embryos via inducing reactive oxygen species and down-regulating Wnt signaling. Aquat Toxicol 205:156–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Guan P, Liu W, Zhao G, Fang Y, Fu H, Gui J-F, Li G, Liu J-X (2020) Copper stress induces zebrafish central neural system myelin defects via WNT/NOTCH-hoxb5b signaling and pou3f1/fam168a/fam168b DNA methylation. Biochimica Et Biophys Acta-Gene Regul Mechan 1863:194612

    Article  CAS  Google Scholar 

  • Zhao G, Sun HJ, Zhang T, Liu JX (2020a) Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal 18:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Zhang T, Sun H, Liu J-X (2020b) Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress. Metallomics 12:12–22

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was finally supported by the Knowledge Innovation Program of Wuhan-Basic Research (2022020801010223), the National Key R&D Program of China (2018YFD0900101), the National Natural Science Foundation of China (Program No. 32070807 to J-X.L), and by the project 2020SKLBC-KF06 of State Key Laboratory of Biocontrol (to J-X.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.S.L., Y.W., H.T.L.: methodology, investigation, formal analysis, data curation, visualization, writing—original draft. Y.W. and H.W. formulated the standard curve of Cu standard solution samples. Y.W.: writing—original draft, investigation, data analysis. J-X.L.: conceptualization, resources, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Jing-Xia Liu.

Ethics declarations

Ethics approval

All animals and experiments were conducted in accordance with the “Guidelines for Experimental Animals” approved by the Institutional Animal Care and Use Ethics Committee of Huazhong Agricultural University (HZAUFI-2016–007).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wu, Y., Li, H. et al. Lipid-related metabolism during zebrafish embryogenesis under unbalanced copper homeostasis. Fish Physiol Biochem 48, 1571–1586 (2022). https://doi.org/10.1007/s10695-022-01127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01127-8

Keywords

Navigation