Skip to main content
Log in

Lipid metabolic disorders and physiological stress caused by a high-fat diet have lipid source-dependent effects in juvenile black seabream Acanthopagrus schlegelii

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate aminotransferase

atf6 :

Activating transcription factor 6

bax :

Bcl2-associated X

bcl-2 :

B cell leukemia 2

Cu/Zn-sod :

Cu-Zn superoxide dismutase

DHA:

Docosahexaenoic

EPA:

Eicosapentaenoic acid

ERS:

Endoplasmic reticulum stress

FO:

Fish oil

FW:

Final weight

gpx:

Glutathione peroxidase

grp78 :

Glucose regulated protein 78

GSH-px:

Glutathione peroxidase

HDL-C:

High-density lipoprotein cholesterol

HFD:

High-fat diet

il-10 :

Interleukin-10

il-1β :

Interleukin-1β

ire1α :

Inositol requiring enzyme-1 ɑ;

IW:

Initial weight

jnk :

C-Jun N-terminal kinase

LC-PUFA:

Long-chain polyunsaturated fatty acid

LDL-C:

Low-density lipoprotein cholesterol

LO:

Linseed oil

MDA:

Malonaldehyde

Mn-sod :

Mn superoxide dismutase

n-3 PUFA:

Omega-3 polyunsaturated fatty acid

n-6 PUFA:

Omega-6 polyunsaturated fatty acid

nf-κb :

Nuclear factor kappa B

OS:

Oxidative stress

PO:

Palm oil

pparα :

Perixisome proliferation-activated receptor alpha

SGR:

Specific growth ratio

sirt1 :

Silent regulator 1

SO:

Soybean oil

SOD:

Superoxide dismutase

SR:

Survival rate;

srebp-1 :

Sterol regulatory element-binding protein-1

TC:

Total cholesterol

TG:

Triglyceride

tgfβ :

Transforming growth factor β

tnfα :

Tumor necrosis factor α

UPR:

Unfolded protein response

Vos:

Vegetable oils

WG:

Weight gain

xbp-1 :

X-box binding protein 1

References

  • Anvith P, Sankar R (2015) The comprehensive review on fat soluble vitamins. IOSR J Pharm 5(11):12–28

    Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (2006) Official Methods of Analysis. 18th Edition, Washington DC, 1018

  • Benítez-Dorta V, Caballero MJ, Izquierdo M, Manchado M, Infante C, Zamorano MJ, Montero D (2013) Total substitution of fish oil by vegetable oils in Senegalese sole (Solea senegalensis) diets: effects on fish performance, biochemical composition, and expression of some glucocorticoid receptor-related genes. Fish Physiol Biochem 39:335–349

    Article  PubMed  CAS  Google Scholar 

  • Berghe G (1991) The Role of the Liver in Metabolic Homeostasis: Implications for Inborn Errors of Metabolism. In: Harkness RA, Pollitt RJ, Addison GM (eds) J Inherited Metab Dis Springer, Dordrecht 407–420

  • Boone L, Meyer D, Cusick P, Ennulat D, Bolliger AP, Everds N, Meador V, Elliott G, Honor D, Bounous D, Jordan H (2005) Selection and interpretation of clinical pathology indicators of hepatic injury in preclinical studies. Vet Clin Pathol 34:182–188

    Article  CAS  PubMed  Google Scholar 

  • Boujard T (2004) Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231:529–545

    Article  Google Scholar 

  • Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao XF, Dai YJ, Liu MY, Yuan XY, Wang CC, Huang YY, Liu WB, Jiang GZ (2019) High-fat diet induces aberrant hepatic lipid secretion in blunt snout bream by activating endoplasmic reticulum stress-associated IRE1/XBP1 pathway. Biochim. Biophys. Acta. Mol Cell Biol Lipids 1864:213–223

    Article  CAS  Google Scholar 

  • Cao XF, Liu WB, Zheng XC, Yuan XY, Wang CC, Jiang GZ (2019) Effects of high-fat diets on growth performance, endoplasmic reticulum stress and mitochondrial damage in blunt snout bream Megalobrama amblycephala. Aquacult Nutr 25:97–109

    Article  CAS  Google Scholar 

  • Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22(13):1753–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27(48):6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Din JN, Newby DE, Flapan AD (2004) Omega 3 fatty acids and cardiovascular disease e fishing for a natural treatment. Br Med J 328(7430):30e35

    Article  Google Scholar 

  • Du ZY, Clouet P, Huang LM, Degrace P, Zheng WH, He JG, Tian LX, Liu YJ (2008) Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation: dietary lipid sources and levels in grass carp. Aquacult Nutr 14:77–92

    Article  CAS  Google Scholar 

  • Fang W, Chen Q, Li J, Liu Y, Zhao Z, Shen Y, Mai K, Ai Q (2021) Endoplasmic reticulum stress disturbs lipid homeostasis and augments inflammation in the intestine and isolated intestinal cells of large yellow croaker (Larimichthys crocea). Front Immunol 12:738143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65(1):261–311

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Félix ML, Maldonado-Othón CA, Perez-Velazquez M (2016) Effect of dietary lipid level and replacement of fish oil by soybean oil in compound feeds for the shortfin corvina (Cynoscion parvipinnis). Aquaculture 454:21–228

    Article  CAS  Google Scholar 

  • Gou N, Ji H, Zhong M, Chang Z, Deng W (2021) Effects of dietary fish oil replacements with three vegetable oils on growth, fatty acid composition, antioxidant capacity, serum parameters and expression of lipid metabolism related genes in juvenile Onychostoma macrolepis. Aquacult Nutr 27:163–175

    Article  CAS  Google Scholar 

  • Guo J, Zhou Y, Zhao H, Chen WY, Chen YJ, Lin SM (2019) Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 506:394–400

    Article  CAS  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Wen X, Li S, Li W, Zhu D (2016) Effects of dietary fish oil replacement with palm oil on the growth, feed utilization, biochemical composition, and antioxidant status of juvenile Chu’s croaker,Nibea Coibor. J World Aquacult Soc 47:786–797

    Article  CAS  Google Scholar 

  • Ji R, Xiang X, Li X, Mai K, Ai Q (2021) Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br J Nutr 126:345–354

    Article  CAS  PubMed  Google Scholar 

  • Jia R, Cao LP, Du JL, He Q, Gu ZY, Jeney G, Xu P, Yin GJ (2020) Effects of high-fat diet on antioxidative status, apoptosis and inflammation in liver of tilapia (Oreochromis niloticus) via Nrf2, TLRs and JNK pathways. Fish Shellfish Immunol 104:391–401

    Article  CAS  PubMed  Google Scholar 

  • Jiao B, Huang X, Chan CB, Zhang L, Wang D, Cheng CH (2006) The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream. J Mol Endocrinol 36(1):23–40

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Yuan Y, Lu Y, Ma H, Sun P, Li Y, Qiu H, Ding L, Zhou Q (2017) Regulation of growth, tissue fatty acid composition, biochemical parameters and lipid related genes expression by different dietary lipid sources in juvenile black seabream, Acanthopagrus schlegelii. Aquaculture 479:25–37

    Article  CAS  Google Scholar 

  • Jin M, Pan T, Cheng X, Zhu TT, Sun P, Zhou F, Ding X, Zhou Q (2019) Effects of supplemental dietary l-carnitine and bile acids on growth performance, antioxidant and immune ability, histopathological changes and inflammatory response in juvenile black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture 504:199–209

    Article  CAS  Google Scholar 

  • Jin M, Pan T, Tocher DR, Betancor MB, Monroig Ó, Shen Y, Zhu T, Sun P, Jiao L, Zhou Q (2019) Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFκB activation in juvenile black seabream (Acanthopagrus schlegelii). J Nutr Sci 8:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin M, Zhu T, Tocher DR, Luo J, Shen Y, Li X, Pan T, Yuan Y, Betancor MB, Jiao L, Sun P, Zhou Q (2020) Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparα and sirt1 in juvenile black seabream (Acanthopagrus schlegelii). Dev Comp Immunol 109:103691

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Shen Y, Pan T, Zhu T, Li X, Xu F, Betancor MB, Jiao L, Tocher DR, Zhou Q (2021) Dietary betaine mitigates hepatic steatosis and inflammation induced by a high-fat-diet by modulating the Sirt1/Srebp-1/Pparɑ pathway in juvenile black seabream (Acanthopagrus schlegelii). Front Immunol 12:694720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi K, Furuta T, Iwata N, Onuki K, Noguchi T (2009) Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer Takifugu rubripes. Aquaculture 298:111–117

    Article  CAS  Google Scholar 

  • Larbi Ayisi C, Zhao J, Wu JW (2018) Replacement of fish oil with palm oil: effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PLoS ONE 13(4):e0196100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin SG, Godukhin OV (2011) Anti-inflammatory cytokines, TGF-β1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: Comparative aspects. Exp Neurol 232(2):329–332

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liang X, Zhang Y, Gao J (2016) Effects of different dietary soybean oil levels on growth, lipid deposition, tissues fatty acid composition and hepatic lipid metabolism related gene expressions in blunt snout bream (Megalobrama amblycephala) juvenile. Aquaculture 451:16–23

    Article  CAS  Google Scholar 

  • Li Y, Jia Z, Liang X, Matulic D, Hussein M, Gao J (2018) Growth performance, fatty-acid composition, lipid deposition and hepatic-lipid metabolism-related gene expression in juvenile pond loach Misgurnus anguillicaudatus fed diets with different dietary soybean oil levels: effect of soybean oil on m. anguillicaudatus. J Fish Biol 92:17–33

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ji R, Cui K, Qiuchi C, Qiang C, Fang W, Mai K, Zhang Y, Xu W, Ai Q (2019) High percentage of dietary palm oil suppressed growth and antioxidant capacity and induced the inflammation by activation of TLR-NF-κB signaling pathway in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 87:600–608

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shen Y, Bao Y, Wu Z, Yang B, Jiao L, Zhang C, Tocher DR, Zhou Q, Jin M (2022) Physiological responses and adaptive strategies to acute low-salinity environmental stress of the euryhaline marine fish black seabream (Acanthopagrus schlegelii). Aquaculture 554:738117

    Article  CAS  Google Scholar 

  • Lin YH, Shiau SY (2007) Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquac Nutr 13:137–144

    Article  CAS  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Sig Transduct Target Ther 2:17023

    Article  Google Scholar 

  • Lomb DJ, Laurent G (1804) Haigis MC (2010) Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta, Proteins Proteomics 8:1652–1657

    Google Scholar 

  • Lu KL, Xu WN, Liu WB, Wang LN, Zhang CN, Li XF (2014) Association of mitochondrial dysfunction with oxidative stress and immune suppression in blunt snout bream Megalobrama amblycephala fed a high-fat diet. J Aquat Anim Health 26:100–112

    Article  PubMed  CAS  Google Scholar 

  • Lu KL, Wang LN, Zhang DD, Liu WB, Xu WN (2017) Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Physiol Biochem 43:65–76

    Article  CAS  PubMed  Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Cantó E, Fernández F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    Article  PubMed  Google Scholar 

  • Milián-Sorribes MC, Martínez-Llorens S, Cruz-Castellón C, Jover-Cerdá M, Tomás-Vidal A (2021) Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili). Aquacult Nutr 27:3–16

    Article  CAS  Google Scholar 

  • Miranda-Díaz AG, García-Sánchez A, Cardona-Muñoz EG (2020) Foods with potential prooxidant and antioxidant effects involved in Parkinson’s disease. Oxid Med Cell Longevity 2020:1–17

    Article  CAS  Google Scholar 

  • Mourente G, Good JE, Thompson KD, Bell JG (2007) Effects of partial substitution of dietary fish oil with blends of vegetable oils, on blood leucocyte fatty acid compositions, immune function and histology in European sea bass (Dicentrarchus labrax L.). Br J Nutr 98:770–779

    Article  CAS  PubMed  Google Scholar 

  • Mu H, Shen H, Liu J, Xie F, Zhang W, Mai K (2018) High level of dietary soybean oil depresses the growth and anti-oxidative capacity and induces inflammatory response in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol 77:465–473

    Article  CAS  PubMed  Google Scholar 

  • Mu H, Wei C, Zhang Y, Zhou H, Pan Y, Chen J, Zhang W, Mai K (2020) Impacts of replacement of dietary fish oil by vegetable oils on growth performance, anti-oxidative capacity, and inflammatory response in large yellow croaker Larimichthys crocea. Fish Physiol Biochem 46:231–245

    Article  CAS  PubMed  Google Scholar 

  • Nasopoulou C, Zabetakis I (2012) Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A Review LWT 47(2):217–224

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC, pp 102–125

    Google Scholar 

  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563

    Article  CAS  PubMed  Google Scholar 

  • Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL (2016) Endoplasmic reticulum stress in obesity and obesity-related disorders: an expanded view[J]. Metabolism 65(9):1238–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Xu W, Mai K, Zhou H, Zhang Y, Liufu Z, Zhang K, Ai Q (2014) Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture 433:442–449

    Article  CAS  Google Scholar 

  • Peng X, Li F, Lin S, Chen Y (2016) Effects of total replacement of fish oil on growth performance, lipid metabolism and antioxidant capacity in tilapia (Oreochromis niloticus). Aquacult Int 24:145–156

    Article  CAS  Google Scholar 

  • Peng M, Xu W, Tan P, Du J, Mai K, Zhou H, Zhang Y, Nian R, Macq B, Ai Q (2017) Effect of dietary fatty acid composition on growth, fatty acids composition and hepatic lipid metabolism in juvenile turbot (Scophthalmus maximus L.) fed diets with required n3 LC-PUFAs. Aquaculture 479:591–600

    Article  CAS  Google Scholar 

  • Philp LK, Heilbronn LK, Janovska A, Wittert GA (2015) Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice. PLoS ONE 10(2):e0117494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piedecausa MA, Mazón MJ, García García B, Hernández MD (2007) Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture 263:211–219

    Article  CAS  Google Scholar 

  • Prola A, Pires Da Silva J, Guilbert A, Lecru L, Piquereau J, Ribeiro M, Mateo P, Gressette M, Fortin D, Boursier C, Gallerne C, Caillard A, Samuel JL, François H, Sinclair DA, Eid P, Ventura-Clapier R, Garnier A, Lemaire C (2017) SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ 24:343–356

    Article  CAS  PubMed  Google Scholar 

  • Qian YC, Wang X, Ren J, Wang J, Limbu SM, Li RX, Zhou WH, Qiao F, Zhang ML, Du ZY (2021) Different effects of two dietary levels of tea polyphenols on the lipid deposition, immunity and antioxidant capacity of juvenile GIFT tilapia (Oreochromis niloticus) fed a high-fat diet. Aquaculture 542:736896

    Article  CAS  Google Scholar 

  • Racicot J, Gaudet M, Leray C (1975) Blood and liver enzymes in rainbow trout (Salmo gairdneri Rich.) with emphasis on their diagnostic use: Study of CCl4 toxicity and a case of Aeromonas infection. J Fish Biol 7:825–835

    Article  CAS  Google Scholar 

  • Rennie KL, Hughes J, Lang R, Jebb SA (2003) Nutritional management of rheumatoid arthritis: a review of the evidence. J Hum Nutr Diet 16:97e109

    Article  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  CAS  PubMed  Google Scholar 

  • Shimano H (2009) SREBPs: physiology and pathophysiology of the SREBP family. FEBS J 276(3):616–621

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Ubaid S (2020) Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43(5):1589–1598

    Article  CAS  PubMed  Google Scholar 

  • Turchini GM, Torstensen BE, Ng WK (2009) Fish oil replacement in finfish nutrition. Rev Aquacult Int 1:10–57

    Article  Google Scholar 

  • Turchini GM, Hermon KM, Francis DS (2018) Fatty acids and beyond: fillet nutritional characterisation of rainbow trout (Oncorhynchus mykiss) fed different dietary oil sources. Aquaculture 491:391–397

    Article  CAS  Google Scholar 

  • Wang X, Li Y, Hou C, Gao Y, Wang Y (2015) Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high-fat diet-induced fatty liver disease. Aquac Res 46:272–282

    Article  CAS  Google Scholar 

  • Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang W, Gladstone S, Ng WK, Zhang J, Shao Q (2019) Effects of isoenergetic diets with varying protein and lipid levels on the growth, feed utilization, metabolic enzymes activities, antioxidative status and serum biochemical parameters of black sea bream (Acanthopagrus schlegelii). Aquaculture 513:734397

    Article  CAS  Google Scholar 

  • Xie S, Lin Y, Wu T, Tian L, Liang J, Tan B (2021) Dietary lipid levels affected growth performance, lipid accumulation, inflammatory response and apoptosis of japanese seabass (lateolabrax japonicus). Aquacult Nutr 27:807–816

    Article  CAS  Google Scholar 

  • Yao X, Liu R, Li X, Li Y, Zhang Z, Huang S, Ge Y, Chen X, Yang X (2021) Zinc, selenium and chromium co-supplementation improves insulin resistance by preventing hepatic endoplasmic reticulum stress in diet-induced gestational diabetes rats. J Nutr Biochem 96:108810

    Article  CAS  PubMed  Google Scholar 

  • Yıldız M, Ofori-Mensah S, Arslan M, Ekici A, Yamaner G, Baltacı MA, Tacer Ş, Korkmaz F (2020) Effects of different dietary oils on egg quality and reproductive performance in rainbow trout Oncorhynchus mykiss. Anim Reprod Sci 221:106545

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz E (2017) Endoplasmic reticulum stress and obesity. Obes Lipotoxicity 261–276

  • Yoshida H (2007) ER stress and diseases: ER stress and diseases. FEBS J 274:630–658

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Wang H, Tian Y, Li Q, He L, Li N, Liu Z (2016) Fish oil alleviated high-fat diet–induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study. Lipids Health Dis 15:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Wang X, Jin M, Sun P, Zhou Q (2019) Influence of different lipid sources on growth performance, oxidation resistance and fatty acid profiles of juvenile swimming crab, Portunus trituberculatus. Aquaculture 508:147–158

    Article  CAS  Google Scholar 

  • Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Xiao JX, Hua Y, Ngandzali BO, Shao QJ (2011) Dietary l-methionine requirement of juvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level: dietary methionine requirement of black sea bream. Aquacult Nutr 17:469–481

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (31802303), National Key R & D Program of China (2018YFD0900400), Scientific Research Foundation of Ningbo University (XYL20007), Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2021007), the Open Fund of Zhejiang Provincial Top Key Discipline of Aquaculture in Ningbo University, and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Qicun Zhou and Min Jin: conceptualization, methodology, validation and supervision; Yuedong Shen, Xuejiao Li, Yangguang Bao, and Tingting Zhu: formal analysis, software, validation; Zhaoxun Wu, Bingqian Yang, and Lefei Jiao: resources; Yuedong Shen: writing—original draft; Qicun Zhou and Min Jin: writing—reviewing and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qicun Zhou or Min Jin.

Ethics declarations

Ethical approval

Animal experimentation within the present study was conducted in accordance with the Animal Research Institute Committee guidelines of Ningbo University, China, and approved by the Committee of Animal Research Institute, Ningbo University, China.

Consent to participate

Not applicable.

Consent for publication

All authors review and approve the manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Li, X., Bao, Y. et al. Lipid metabolic disorders and physiological stress caused by a high-fat diet have lipid source-dependent effects in juvenile black seabream Acanthopagrus schlegelii. Fish Physiol Biochem 48, 955–971 (2022). https://doi.org/10.1007/s10695-022-01095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01095-z

Keywords

Navigation