Skip to main content

Effects of perfluoroalkyl substances (PFASs) and benzo[a]pyrene (BaP) co-exposure on phase I biotransformation in rainbow trout (Oncorhynchus mykiss)

Abstract

The presence of perfluoroalkyl substances (PFASs) in the environment, especially in aquatic ecosystems, continues to be a significant concern for human and environmental health. Previous studies have suggested that several PFASs do not undergo biotransformation due to their chemical stability, yet perfluorooctanesulfonic acid (PFOS)- and perfluorooctanoic acid (PFOA)-exposed organisms have presented altered activity of important biotransformation pathways. Given the fundamental role of biotransformation in biological organisms and the significant distribution of PFAS in aquatic environments, the present study investigated the influence of PFOA and PFOS on phase I biotransformation enzymes in vitro using the rainbow trout liver RTL-W1 cell line and in vivo using juvenile rainbow trout. Cells and fish were exposed and co-exposed to environmentally relevant concentrations of PFOA, PFOS, and benzo[a]pyrene (BaP), for 72 h and 10 days, respectively, prior to measurements of cytotoxicity and biotransformation ability through measurements of CYP1A1-, CYP1A2-, and CYP3A4-like activities. Our results indicate that exposure to PFAS-BaP binary mixtures altered CYP1A-like activity in vivo; however, those alterations were not observed in vitro. Similarly, while BaP did not significantly induce CYP3A4 in vivo, exposure to the PFAS led to significantly lower enzymatic activity relative to basal levels. These observations may have implications for organisms simultaneously exposed to PFASs and other environmental pollutants for which biotransformation is necessary, especially in detoxification mechanisms. Furthermore, the interference with biotransformation pathways could potentially predispose exposed organisms to a compromised physiology, which may increase their vulnerability to other stressors and erode their survival fitness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amstutz VH, Cengo A, Sijm DTHM, Vrolijk MF (2022) The impact of legacy and novel perfluoroalkyl substances on human cytochrome P450: an in vitro study on the inhibitory potential and underlying mechanisms. Toxicology 468

  • Ankley GT, Cureton P, Hoke RA, Houde M, Kumar A, Kurias J, Lanno R, Mccarthy C, Newsted J, Salice CJ, Sample BE, Sepúlveda MS, Steevens J, Valsecchi S (2021) Assessing the ecological risks of per- and polyfluoroalkyl substances: current state-of-the science and a proposed path forward. Environ Toxicol Chem 40:564–605

    Article  CAS  PubMed  Google Scholar 

  • Booc F, Thornton C, Lister A, MacLatchy D, Willett KL (2014) Benzo[a]pyrene effects on reproductive endpoints in Fundulus heteroclitus. Toxicol Sci 140:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chambers WS, Hopkins JG, Richards SM (2021) A review of per-and polyfluorinated alkyl substance (PFAS) impairment of reproduction. Front Toxicol 53:2673–3080

    Google Scholar 

  • Conder JM, Hoke RA, Wolf WD, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? a critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Connors KA, Du B, Fitzsimmons PN, Hoffman AD, Chambliss CK, Nichols JW, Brooks BW (2013) Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environ Toxicol Chem 32:1810–1818

    Article  CAS  PubMed  Google Scholar 

  • Cordner A, De La Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P (2019) Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol 29:157–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dale K, Yadetie F, Müller MB, Pampanin DM, Gilabert A, Zhang X, Tairova Z, Haarr A, Lille-Langøy R, Lyche JL, Porte C, Karlsen OA, Goksøyr A (2020) Proteomics and lipidomics analyses reveal modulation of lipid metabolism by perfluoroalkyl substances in liver of Atlantic cod (Gadus morhua). Aquat Toxicol 227

  • De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM (2021) PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environ Toxicol Chem 40:631–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco ME, Lavado R (2019) Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: advances and challenges. Sci Total Environ 671:685–695

    Article  CAS  PubMed  Google Scholar 

  • Franco ME, Ramirez AJ, Johanning K, Matson CW, Lavado R (2022) In vitro-in vivo biotransformation and phase I metabolite profiling of benzo[a]pyrene in Gulf killifish (Fundulus grandis) populations with different exposure histories. Aquat Toxicol 243:106057

    Article  CAS  PubMed  Google Scholar 

  • Franco ME, Sutherland GE, Fernandez-Luna MT, Lavado R (2020) Altered expression and activity of phase I and II biotransformation enzymes in human liver cells by perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). Toxicology 430:152339

    Article  CAS  PubMed  Google Scholar 

  • Franco ME, Sutherland GE, Lavado R (2018) Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: biomarkers of CYP450 activity and oxidative stress. Comp Biochem Physiol c, Toxicol Pharmacol 206–207:32–40

    Article  CAS  Google Scholar 

  • Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, Mccord J, Hines E, Strynar M, Tal T (2020) Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to Genx and other PFAS. Environ Health Perspect 128:047005

    Article  CAS  PubMed Central  Google Scholar 

  • Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57–63

    Article  CAS  PubMed  Google Scholar 

  • Goeritz I, Falk S, Stahl T, Schäfers C, Schlechtriem C (2013) Biomagnification and tissue distribution of perfluoroalkyl substances (PFASs) in market-size rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 32:2078–2088

    Article  CAS  PubMed  Google Scholar 

  • Hagenaars A, Vergauwen L, De Coen W, Knapen D (2011) Structure–activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere 82:764–772

    Article  CAS  PubMed  Google Scholar 

  • Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O (2020) Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 94:3671–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich P, Diehl U, Forster F, Braunbeck T (2014) Improving the in vitro ethoxyresorufin-O-deethylase (EROD) assay with RTL-W1 by metabolic normalization and use of beta-naphthoflavone as the reference substance. Comp Biochem Physiol C, Toxicol Pharmacol 164:27–34

    Article  CAS  Google Scholar 

  • Honda M, Suzuki N (2020) Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int J Environ Res Public Health 17:1363

    Article  CAS  PubMed Central  Google Scholar 

  • Horvli, T (2020) Mixture effects of benzo(a)pyrene and perfluoroalkyl substances on the aryl hydrocarbon receptor signalling pathway and energy metabolism of Atlantic cod (Gadus morhua). The University of Bergen.

  • Jiang Y, Fan X, Wang Y, Chen P, Zeng H, Tan H, Gonzalez FJ, Huang M, Bi H (2014) Schisandrol b protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration. Toxicol Sci 143:107–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jönsson ME, Brunström B, Ingebrigtsen K, Brandt I (2004) Cell-specific CYP1A expression and benzo[a]pyrene adduct formation in gills of rainbow trout (Oncorhynchus mykiss) following CYP1A induction in the laboratory and in the field. Environ Toxicol Chem 23:874

    Article  PubMed  Google Scholar 

  • Khan EA, Bertotto LB, Dale K, Lille-Langøy R, Yadetie F, Karlsen OA, Goksøyr A, Schlenk D, Arukwe A (2019) Modulation of neuro-dopamine homeostasis in juvenile female Atlantic cod (Gadus morhua) exposed to polycyclic aromatic hydrocarbons and perfluoroalkyl substances. Environ Sci Technol 53:7036–7044

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I (2019) Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 94:1–58

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Kawashima Y (2003) Toxicity and toxicokinetics of perfluorooctanoic acid in human and animals. J Toxicol Sci 28:49–57

    Article  CAS  PubMed  Google Scholar 

  • Kunacheva C, Fujii S, Tanaka S, Seneviratne ST, Lien NP, Nozoe M, Kimura K, Shivakoti BR, Harada H (2012) Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years. Water Sci Technol 66:2764–2771

    Article  CAS  PubMed  Google Scholar 

  • Lammel T, Tsoukatou G, Jellinek J, Sturve J (2019) Development of three-dimensional (3D) spheroid cultures of the continuous rainbow trout liver cell line RTL-W1. Ecotoxicol Environ Saf 167:250–258

    Article  CAS  PubMed  Google Scholar 

  • Lavado R, Thibaut R, Raldua D, Martin R, Porte C (2004) First evidence of endocrine disruption in feral carp from the Ebro River. Toxicol Appl Pharmacol 196:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu J, He W, Xu F (2019) A review on perfluoroalkyl acids studies: environmental behaviors, toxic effects, and ecological and health risks. Ecosyst Health Sustain 5:1–19

    Article  Google Scholar 

  • Martin JW, Mabury SA, Solomon KR, Muir DCG (2003) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22:196–204

    Article  CAS  PubMed  Google Scholar 

  • Mortensen AS, Letcher RJ, Cangialosi MV, Chu S, Arukwe A (2011) Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids. Chemosphere 83:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Myers JN, Rekhadevi PV, Ramesh A (2011) Comparative evaluation of different cell lysis and extraction methods for studying benzo(a)pyrene metabolism in HT-29 colon cancer cell cultures. Cell Physiol Biochem 28:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacci DE, Kohan M, Pelletier M, George E (2002) Effects of benzo[a]pyrene exposure on a fish population resistant to the toxic effects of dioxin-like compounds. Aquat Toxicol 57:203–215

    Article  CAS  PubMed  Google Scholar 

  • Ng CA, Hungerbühler K (2013) Bioconcentration of perfluorinated alkyl acids: how important is specific binding? Environ Sci Technol 47:7214–7223

    Article  CAS  PubMed  Google Scholar 

  • Perez F, Nadal M, Navarro-Ortega A, Fabrega F, Domingo JL, Barcelo D, Farre M (2013) Accumulation of perfluoroalkyl substances in human tissues. Environ Int 59:354–362

    Article  CAS  PubMed  Google Scholar 

  • Qiang L, Chen M, Zhu L, Wu W, Wang Q (2016) Facilitated bioaccumulation of perfluorooctanesulfonate in common carp (Cyprinus carpio) by graphene oxide and remission mechanism of fulvic acid. Environ Sci Technol 50:11627–11636

    Article  CAS  PubMed  Google Scholar 

  • Santana MS, Sandrini-Neto L, Filipak Neto F, Oliveira Ribeiro CA, Di Domenico M, Prodocimo MM (2018) Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): systematic review and meta-analysis. Environ Pollut 242:449–461

    Article  CAS  PubMed  Google Scholar 

  • Shan G, Yu M, Yu S, Zhu L (2014) Analysis of perfluorooctanoic acid by high performance liquid chromatography with 3,4-dichloroaniline derivatization. Chin J Chromatogr 32:942–947

    Article  CAS  Google Scholar 

  • Smith EM, Wilson JY (2010) Assessment of cytochrome P450 fluorometric substrates with rainbow trout and killifish exposed to dexamethasone, pregnenolone-16α-carbonitrile, rifampicin, and β-naphthoflavone. Aquat Toxicol 97:324–333

    Article  CAS  PubMed  Google Scholar 

  • Teaf CM, Garber MM, Covert DJ, Tuovila BJ (2019) Perfluorooctanoic acid (PFOA): environmental sources, chemistry, toxicology, and potential risks. Soil Sediment Contam 28:258–273

    Article  CAS  Google Scholar 

  • Thibaut R, Schnell S, Porte C (2009) Assessment of metabolic capabilities of PLHC-1 and RTL-W1 fish liver cell lines. Cell Biol Toxicol 25:611–622

    Article  CAS  PubMed  Google Scholar 

  • Vidal A, Babut M, Garric J, Beaudouin R (2019) Elucidating the fate of perfluorooctanoate sulfonate using a rainbow trout (Oncorhynchus mykiss) physiologically-based toxicokinetic model. Sci Total Environ 691:1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Wessel N, Santos R, Menard D, Le Menach K, Buchet V, Lebayon N, Loizeau V, Burgeot T, Budzinski H, Akcha F (2010) Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). Mar Environ Res 69:S71–S73

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Luo K, Fan Z, Huang C, Hu J (2013) Modulation of benzo[a]pyrene-induced toxic effects in japanese medaka (Oryzias latipes) by 2,2′,4,4′-tetrabromodiphenyl ether. Environ Sci Technol 47:13068–13076

    Article  CAS  PubMed  Google Scholar 

  • Zheng X-M, Liu H-L, Shi W, Wei S, Giesy JP, Yu H-X (2012) Effects of perfluorinated compounds on development of zebrafish embryos. Environ Sci Pollut Res 19:2498–2505

    Article  CAS  Google Scholar 

  • Zhong W, Zhang L, Cui Y, Chen M, Zhu L (2019) Probing mechanisms for bioaccumulation of perfluoroalkyl acids in carp (Cyprinus carpio): impacts of protein binding affinities and elimination pathways. Sci Total Environ 647:992–999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Matteo Minghetti from Oklahoma State University for kindly providing the RTL-W1 cell line and Professor Niels C. Bols from the University of Waterloo for kindly allowing the use of this cell line.

Funding

This research was funded by the C. Gus Glasscock, Jr. Fund of Excellence in Environmental Sciences at Baylor University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Megan E. Solan and Marco E. Franco. The first draft of the manuscript was written by Megan E. Solan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramon Lavado.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solan, M.E., Franco, M.E. & Lavado, R. Effects of perfluoroalkyl substances (PFASs) and benzo[a]pyrene (BaP) co-exposure on phase I biotransformation in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 48, 925–935 (2022). https://doi.org/10.1007/s10695-022-01093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01093-1

Keywords

  • Biotransformation
  • Perfluorooctanoic acid (PFOA)
  • Perfluorooctanesulfonic acid (PFOS)
  • In vivo
  • In vitro
  • Rainbow trout
  • RTL-W1