Skip to main content
Log in

The insulin gene as an energy homeostasis biomarker in Yangtze sturgeon (Acipenser dabryanus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Insulin plays an important role in maintaining energy homeostasis and has the potential to be an indicator of energy homeostasis in the Yangtze sturgeon, Acipenser dabryanus. In this study, the Yangtze sturgeon insulin (Adinsulin) was cloned and characterized. To evaluate the possibility of insulin as an energy state assessment indicator, quantification real-time PCR (qRT-PCR) was used to evaluate expression changes in different tissues (the whole brain, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, duodenum, valvula intestine, rectum, liver, pancreas, spleen, kidney, heart, muscle, gill and eye) from 6 fish (average weight 325.7 ± 22.3 g) and in three experiments including postprandial, fasting and re-feeding, and glucose tolerance treatment in which fish were divided into two groups including a group that administered a glucose solution (1 ul/g body weight) and another group that administered sterile water as control. In these three experiments, 6 fish were sampled, respectively, then been used to evaluate expression changes of insulin. All fish in feeding groups were fed in tanks (60.0 cm × 50.0 cm × 40.0 cm) with a commercial diet (crude protein ≥ 40%, crude fat ≥ 12%, coarse fiber ≤ 6%, crude ash ≤ 18%; TONGWEI CO., LTD, China) once a day at 16:00. The result showed that Adinsulin was highly expressed in the pancreas, which was the basis for the next experiment to use the pancreas as the test target. Adinsulin expression significantly increased 1 h after feeding and decreased rapidly after 3 h of feeding, but it was still significantly higher than that of the group without feeding (P < 0.01). Compared to the feeding group, the expression of Adinsulin was significantly reduced in the fasting group of 3 days (P < 0.01), 6 days (P < 0.01), 10 days (P < 0.05), 11 days (P < 0.05) and 13 days (P < 0.01) and was no significant difference in re-feeding for 1st day, 2nd day and 4th day, but there was difference between re-feeding group and fasting group. After glucose tolerance treatment, serum glucose levels increased significantly (P < 0.05), accompanied by a significant increase (P < 0.001) in insulin expression. This study result shows that insulin has the capacity to measure the energy homeostasis of Yangtze sturgeon. Further development of detection methods for sturgeon plasma or serum insulin will avoid slaughtering animals and is more practical in energy homeostasis assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Albalat A, Gomez-Requeni P, Rojas P, Médale F, Kaushik S, Vianen G, Van-den-Thillart G, Gutiérrez J, Pérez-Sánchez J, Navarro I (2005) Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am J Physiol Regul Integr Comp Physiol 289:R259–R265

    Article  CAS  PubMed  Google Scholar 

  • Bajaj M, Blundell TL, Pitts JE, Wood SP, Tatnell MA, Falkmer S, Emdin SO, Gowan LK, Crow H, Schwabe C (1983) Dogfish insulin: Primary structure, conformation and biological properties of an elasmobranchial insulin. Eur J Biochem 135:535–542

    Article  CAS  PubMed  Google Scholar 

  • Blasco J, Fernandez J, Gutiérrez J (1992a) Variations in tissue reserves, plasma metabolites and pancreatic hormones during fasting in immature carp (Cyprinus carpio). Comp Biochem Physiol A Mol Integr Physiol 103:357–363

    Article  Google Scholar 

  • Blasco J, Fernández J, Gutiérrez J (1992b) Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol B 162:539–546

    Article  CAS  Google Scholar 

  • Caruso MA, Kittilson JD, Raine J, Sheridan MA (2008) Rainbow trout (Oncorhynchus mykiss) possess two insulin-encoding mRNAs that are differentially expressed. Gen Comp Endocrinol 155:695–704

    Article  CAS  PubMed  Google Scholar 

  • Caruso MA, Sheridan MA (2011) New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 173:227–247

    Article  CAS  PubMed  Google Scholar 

  • Caruso MA, Sheridan MA (2014) Differential regulation of the multiple insulin and insulin receptor mRNAs by somatostatin. Mol Cell Endocrinol 384:126–133

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang B, Yu N, Qi J, Tang N, Wang S, Tian Z, Wang M, Xu S, Zhou B (2019) Transcriptome analysis and the effects of polyunsaturated fatty acids on the immune responses of the critically endangered angtze sturgeon (Acipenser dabryanus). Fish Shellfish Immunol 94:199–210

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Qu X, Xiong F, Lu Y, Wang L, Hughes RM (2020) Challenges to saving China’s freshwater biodiversity: Fishery exploitation and landscape pressures. Ambio 49:926–938

    Article  PubMed  Google Scholar 

  • Corssmit E, Romijn J, Sauerwein H (2001) Regulation of glucose production with special attention to nonclassical regulatory mechanisms: a review. Metab Clin Exp 50:742–755

    Article  CAS  PubMed  Google Scholar 

  • Cunningham BA, Deeney JT, Bliss CR, Corkey BE, Tornheim K (1996) Glucose-induced oscillatory insulin secretion in perifused rat pancreatic islets and clonal beta-cells (HIT). Am J Physiol-Endoc M 271:E702–E710

    CAS  Google Scholar 

  • Del-Sol-Novoa M, Capilla E, Rojas P, Baró J, Gutiérrez J, Navarro I (2004) Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 139:48–54

    Article  CAS  PubMed  Google Scholar 

  • El-Salhy M (1984) Immunocytochemical investigation of the gastro-enteropancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish Squalus acanthias. Histochemistry 80:193–205

    Article  CAS  PubMed  Google Scholar 

  • Fortin JS, Santamaria-Bouvier A, Lair S, Dallaire AD, Benoit-Biancamano MO (2015) Anatomic and molecular characterization of the endocrine pancreas of a teleostean fish: Atlantic wolffish (Anarhichas lupus). Zool Stud 54:229–235

    Article  Google Scholar 

  • Foster G, Moon T (1989) Insulin and the regulation of glycogen metabolism and gluconeogenesis in American eel hepatocytes. Gen Comp Endocrinol 73:374–381

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Horvath TL (2008) Neuronal control of energy homeostasis. FEBS Lett 582(1):132–141

    Article  CAS  PubMed  Google Scholar 

  • Gastaldelli A, Natali A, Vettor R, Corradini SG (2010) Insulin resistance, adipose depots and gut: interactions and pathological implications. Dig Liver Dis 42:310–319

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez J, Plisetskaya EM (1991) Insulin binding to liver plasma membranes in salmonids with modified plasma insulin levels. Can J Zool 69:2745–2750

    Article  Google Scholar 

  • Hrytsenko O, Wright JR, Morrison CM, Pohajdak B (2007) Insulin expression in the brain and pituitary cells of tilapia (Oreochromis niloticus). Brain Res 1135:31–40

    Article  CAS  PubMed  Google Scholar 

  • Hrytsenko O, Wright JR, Pohajdak B (2008) Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 155:328–340

    Article  CAS  PubMed  Google Scholar 

  • Hrytsenko O, Pohajdak B, Wright JR (2016) Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene. Islets 8:e1187352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irwin DM (2004) A second insulin gene in fish genomes. Gen Comp Endocrinol 135:150–158

    Article  CAS  PubMed  Google Scholar 

  • Irwin DM (2019) Duplication and diversification of insulin genes in ray-finned fish. Zool Res 40:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakleas K, Christodouli F, Karavanaki K (2020) Non-alcoholic fatty liver disease, insulin resistance and sweeteners: a literature review. Expert Rev Endocrinol Metab 15(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F (2019) Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 56:769–796

    Article  PubMed  CAS  Google Scholar 

  • Larguinho M, Costa PM, Sousa G, Costa MH, Diniz MS, Baptista PV (2014) Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. J Appl Toxicol 34:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Larsen DA, Beckman BR, Dickhoff WW (2001) The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 123:308–323

    Article  CAS  PubMed  Google Scholar 

  • Legate N, Bonen A, Moon T (2001) Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas). Gen Comp Endocrinol 122:48–59

    Article  CAS  PubMed  Google Scholar 

  • Leggatt RA, Iwama GK (2003) Occurrence of polyploidy in the fishes. Rev Fish Biol Fish 13:237–246

    Article  Google Scholar 

  • Li Q, Lu X, Liang H, Ai Q, Mai K (2018) Effects of dietary levels of protein on growth, feed utilization and physiological parameters for juvenile Dabry’s sturgeon, Acipenser dabryanus. Aquacult Res 49:2099–2107

    Article  CAS  Google Scholar 

  • Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Pujol J, Ren MX (2009) Biodiversity and the Three Gorges Reservoir: a troubled marriage. J Nat Hist 43:2765–2786

    Article  Google Scholar 

  • Ma A, He M, Bai J, Wong MK, Ko WK, Wong AO (2017) Dual role of insulin in spexin regulation: functional link between food intake and spexin expression in a fish model. Endocrinology 158:560–577

    CAS  PubMed  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27:937–945

    Article  CAS  PubMed  Google Scholar 

  • Mommsen T (1991) Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev Aqua Sci 4:225–259

    CAS  Google Scholar 

  • Navarro I, Rojas P, Capilla E, Albalat A, Castillo J, Montserrat N, Codina M, Gutiérrez J (2002) Insights into insulin and glucagon responses in fish. Fish Physiol Biochem 27:205–216

    Article  CAS  Google Scholar 

  • Nejedli S, Gajger IT (2013) Hepatopancreas in some sea fish from different species and the structure of the liver in teleost fish, common pandora, Pagellus erythinus (Linnaeus, 1758) and whiting, Merlangius merlangus euxinus (Nordmann, 1840). Vet Arh 83:441–452

    Google Scholar 

  • Nolan C, Margoliash E, Peterson JD, Steiner DF (1971) The structure of bovine proinsulin. J Biol Chem 246:2780–2795

    Article  CAS  PubMed  Google Scholar 

  • Plisetskaya E, Sower SA, Gorbman A (1983) The effect of insulin insufficiency on plasma thyroid hormones and some metabolic constituents in Pacific hagfish, Eptatretus stouti. Gen Comp Endocrinol 49:315–319

    Article  CAS  PubMed  Google Scholar 

  • Plisetskaya EM (1998) Some of my not so favorite things about insulin and insulin-like growth factors in fish. Comp Biochem Physiol B Biochem Mol Biol 121:3–11

    Article  CAS  PubMed  Google Scholar 

  • Plisetskaya EM, Duan C (1994) Insulin and insulin-like growth factor I in coho salmon Oncorhynchus kisutch injected with streptozotocin. Am J Physiol Regul Integr Comp Physiol 267:R1408–R1412

    Article  CAS  Google Scholar 

  • Plisetskaya EM, Buchelli-Narvaez LI, Hardy RW, Dickhoff WW (1991) Effects of injected and dietary arginine on plasma insulin levels and growth of Pacific salmon and rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 98:165–170

    Article  Google Scholar 

  • Polakof S, Panserat S (2016) How Tom Moon’s research highlighted the question of glucose tolerance in carnivorous fish. Comp Biochem Physiol B Biochem Mol Biol 199:43–49

    Article  CAS  PubMed  Google Scholar 

  • Rojas P, Albalat A, Santigosa E, Pérez-Sánchez J, Kaushik S, Gutiérrez J, Navarro I (2009) Dietary effects on insulin and glucagon plasma levels in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata). Aquacult Nutr 15:166–176

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101

    Article  CAS  PubMed  Google Scholar 

  • Soengas J, Aldegunde M (2004) Brain glucose and insulin: effects on food intake and brain biogenic amines of rainbow trout. J Comp Physiol A 190:641–649

    Article  CAS  Google Scholar 

  • Stenvers DJ, Scheer FA, Schrauwen P, la Fleur SE, Kalsbeek A (2019) Circadian clocks and insulin resistance. Nat Rev Endocrinol 15:75–89

    Article  PubMed  CAS  Google Scholar 

  • Stone DA (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369

    Article  CAS  Google Scholar 

  • Sundby A, Eliassen K, Refstie T, Plisetskaya EM (1991) Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights. Fish Physiol Biochem 9:223–230

    Article  CAS  PubMed  Google Scholar 

  • Sung W, Peiqi Y, Yiyu C, Commission ESS (1998) China Red data book of endangered animals: Pisces (Translation from Chinese)

  • Tagliafierro G, Carlini M, Faraldi G, Morescalchi A, Putti R, Della Rossa A, Fasulo S, Mauceri A (1996) Immunocytochemical Detection of Islet Hormones in the Digestive System ofProtopterus annectens. Gen Comp Endocrinol 102:288–298

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorndyke M, Purvis D, Plisetskaya E (1989) Insulin-like immunoreactivity in the brain of two hagfishes, Eptatretus stouti and Myxine glutinosa. Gen Comp Endocrinol 76:371–381

    Article  CAS  PubMed  Google Scholar 

  • Wright JR Jr, Yang H, Hyrtsenko O, Xu BY, Yu W, Pohajdak B (2014) A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a “humanized” tilapia insulin. Xenotransplantation 21:485–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen X, Bai J, Fang D, Qiu Y, Jiang W, Yuan H, Bian C, Lu J, He S (2016) The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol 14:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A (2019) Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 234:8152–8161

    Article  CAS  PubMed  Google Scholar 

  • Ye G, Zhang W, Dong X, Tan B, Zhang S (2020) Effects of acute hyperglycaemia stress on indices of glucose metabolism and glucose transporter genes expression in cobia (Rachycentron canadum). Aquacult Res 51:584–594

    Article  CAS  Google Scholar 

  • Youson JH, Al-Mahrouki AA (1999) Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fishes. Gen Comp Endocrinol 116:303–335

    Article  CAS  PubMed  Google Scholar 

  • Youson JH, Al-Mahrouki AA, Naumovski D, Conlon JM (2001) The endocrine cells in the gastroenteropancreatic system of the Bowfin, Amia calva L.: an immunohistochemical, ultrastructural, and immunocytochemical analysis. J Morphol 250:208–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Fishery Institute of the Sichuan Academy of Agricultural Sciences for providing the fish used in these experiments and for permitting the use of part of its laboratory for the study.

Funding

This study was supported by grants from the Major Project of the Education Department in Sichuan (12ZA120) and the Double Branch Plan of Sichuan Agricultural University (03571762). This study was supported by the China Scholarship Council (201906910073).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and H.C. were involved in conceptualization; X.Z., N.T. and Y.L. helped in methodology; H.C. contributed to software; H.C., D.C. and Y.L. were involved in validation; H.C. and X.Z. helped in formal analysis; X.Z., N.T. and Y.L. contributed to investigation; D.C. and Z.L. were involved in resources; H.C. helped in data curation; X.Z. contributed to writing—original draft preparation; H.C. and Z.L. were involved in writing—review and editing; H.C. helped in visualization; Z.L. contributed to supervision, project administration; Z.L. and H.C were involved in funding acquisition.

Corresponding authors

Correspondence to Hu Chen or Zhiqiong Li.

Ethics declarations

Consent to participate

The authors agree to collaborate and publish this article.

Consent for publication

We will transfer the copyright of the article to editorial office for publishing.

Ethics approval/declarations

Animal experiments were approved by the Animal Care and Use Committee of Sichuan Agricultural University with approval numbers B20172101-1711, B20172101-1802, B20172101-1806, and B20172101-1910.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, H., Li, Y. et al. The insulin gene as an energy homeostasis biomarker in Yangtze sturgeon (Acipenser dabryanus). Fish Physiol Biochem 48, 693–705 (2022). https://doi.org/10.1007/s10695-022-01079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01079-z

Keywords

Navigation