Skip to main content
Log in

Temperature and salinity effects on whole-organism and cellular level stress responses of the sub-Antarctic notothenioid fish Patagonotothen cornucola yolk-sac larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This work aimed to evaluate the whole-organism and cellular level responses to different combinations of water temperature and salinity of the notothenioid Patagonotothen cornucola at the end of the yolk-sac larval stage. Egg masses of the species were collected in the wild and then maintained at natural water conditions (4 °C and 30 PSU). Newly hatched larvae were placed in aquaria with different combinations of water temperature (4 °C, 12 °C, and 16 °C) and salinity (15 and 30 PSU) during four days before yolk sac absorption. Larvae exposed to 12 °C grew more in length than those exposed to 16 °C, but yolk volume was more reduced in larvae exposed to 16 °C than those exposed to 4 °C and 30 PSU than of 15 PSU. In addition, a higher proportion of larvae exposed to 12 °C and 15 PSU completely absorbed their yolk. Whereas the more tolerant larvae to high temperatures were those exposed to 16 °C and 30 PSU, lipid peroxidation and protein oxidation were highest at natural and at 12 °C and 30 PSU conditions, respectively. The nutritional status (as standardized DNA/RNA index—sRD -) was low in all cases, even at natural conditions (average sRD ~ 1). Our study suggests that, in the context of climate change, the mortality rate of yolk-sac larvae of P. cornucola would not increase due to temperature or salinity stress. However, indirect effects (such as habitat degradation or changes in food availability) would be critical after complete absorption of the yolk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defense systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol a: Mol Integr Physiol 138(4):405–415

    Article  CAS  Google Scholar 

  • Ansaldo M, Sacristán H, Wider E (2007) Does starvation influence the antioxidant status of the digestive gland of Nacella concinna in experimental conditions? Comp Biochem Phys c: Pharmacol Toxicol Endocrinol 146(1–2):118–123

    Google Scholar 

  • Arslan M, Alaybasi S, Altun E, Gulen S, Sirkecioglu N, Atasever A, Haliloglu HI, Aras M (2016) Changes in lipids, fatty acids, lipid peroxidation and antioxidant defence system during the early development of wild brown trout (Salmo trutta). Turk J Fish Aquat Sci 16(3):703–714

    Article  Google Scholar 

  • Beitinger TL, Lutterschmidt WI (2011) Measures of thermal tolerances. In: Farrell AP (ed) Encyclopaedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 1695–1702

    Chapter  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58(3):237–275

    Article  Google Scholar 

  • Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fish 4(3):245–256

    Article  Google Scholar 

  • Borgeraas J, Hessen DO (2000) UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures. J Plankton Res 22(6):1167–1183

    Article  CAS  Google Scholar 

  • Boy CC, Morriconi E, Calvo J (2007) Reproduction in puyen, Galaxias maculatus (Pisces: Galaxiidae) in the southernmost extreme of distribution. J Appl Ichthyol 23(5):547–554

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bruno DO, Victorio MF, Acha EM, Fernández DA (2018) Fish early life stages associated with giant kelp forests in sub-Antarctic coastal waters (Beagle Channel, Argentina). Polar Biol 41(2):365–375

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58(1):79–110

    Article  CAS  PubMed  Google Scholar 

  • Caldarone EM, Wagner M, Onge-Burns JSt, Buckley LJ (2001) Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543–1026

  • Caldarone EM, Clemmesen MC, Berdalet E, Miller TJ, Folkvord A, Holt GJ, Olivar MP, Suthers IM (2006) Intercalibration of four spectrofluorometric protocols for measuring RNA:DNA ratios in larval and juvenile fish. Limnol Oceanogr Methods 4(5):153–163

    Article  CAS  Google Scholar 

  • Carnevali O, Mosconi G, Centonze F, Navas J, Zanuy S, Carrillo M, Bromage NR (1998) Influence of dietary lipid composition on yolk protein components in sea bass, Dicentrarchus labrax. Sci Mar 62(4):311–318

  • Chícharo MA (1997) Starvation percentages in field caught Sardina pilchardus larvae off southern Portugal. Sci Mar 61(4):507–516

  • Chícharo MA, Chícharo L (2008) RNA:DNA ratio and other nucleic acid derived indices in marine ecology. Int J Mol Sci 9(8):1453–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • China V, Holzman R (2014) Hydrodynamic starvation in first-feeding larval fishes. Proc Natl Acad Sci USA 111(22):8083–8088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claireaux G, Lagardère JP (1999) Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J Sea Res 42(2):157–168

    Article  CAS  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83(5):265–296

    Google Scholar 

  • Currie S, Schulte PM (2014) Thermal stress. In: Evans DH, Claiborne JB, Currie S (eds) The physiology of fishes 4th ed. CRC Press, Taylor & Francis Group, Boca Raton, pp 257–287

  • Dahlke FT, Wohlrab S, Butzin M, Pörtner HO (2020) Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369(6499):65–70

    Article  CAS  PubMed  Google Scholar 

  • Diaz MV, Pájaro M (2012) Protocolo para la determinación de ácidos nucleicos en larvas de peces. Inf Invest INIDEP 20:1–9

    Google Scholar 

  • Diaz MV, Marrari M, Casa V, Gattás F, Pájaro M, Macchi GJ (2018) Evaluating environmental forcing on nutritional condition of Engraulis anchoita larvae in a productive area of the Southwestern Atlantic Ocean. Progr Oceanogr 168:13–22

    Article  Google Scholar 

  • Eme J, Bennett WA (2009) Critical thermal tolerance polygons of tropical marine fishes from Sulawesi. Indonesia J Thermal Biol 34(5):220–225

    Article  Google Scholar 

  • Evans CW, Williams DE, Vacchi M, Brimble MA, DeVries AL (2012) Metabolic and behavioural adaptations during early development of the Antarctic silverfish. Pleuragramma Antarcticum Polar Biol 35(6):891–898

    Article  Google Scholar 

  • Fagan JM, Sleczka BG, Sohar I (1999) Quantitation of oxidative damage to tissue proteins. Int J Biochem Cell Biol 31(7):751–757

    Article  CAS  PubMed  Google Scholar 

  • Ferron A, Leggett WC (1994) An appraisal of condition measures for marine fish larvae. Adv Mar Biol 30:217–303

    Article  Google Scholar 

  • Finn RN, Fyhn HJ, Evjen MS (1995) Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar Biol 124(3):355–369

  • Foley CJ, Bradleyc DL, Höök TO (2016) A review and assessment of the potential use of RNA:DNA ratios to assess the condition of entrained fish larvae. Ecol Indic 60:346–357

    Article  CAS  Google Scholar 

  • Fuiman LA (2002) Special considerations of fish eggs and larvae. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 1–32

    Google Scholar 

  • Gille ST (2002) Warming of the southern ocean since the 1950s. Science 295(5558):1275–1277

    Article  CAS  PubMed  Google Scholar 

  • Giménez EM, Barrantes ME, Fernández DA, Lattuca ME (2021) Thermal responses of two sub-Antarctic notothenioid fishes, the black southern cod Patagonotothen tessellata (Richardson, 1845) and the Magellan plunderfish Harpagifer bispinis (Forster, 1801), from southern South America. Pol Biol 44:1055–1067

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, New York

    Book  Google Scholar 

  • Haney DC, Walsh SJ (2003) Influence of salinity and temperature on the physiology of Limia melanonotata (Cyprinodontiforme: Poeciliidae): a search for abiotic factors limiting insular distribution in Hispaniola. Caribb J Sci 39(3):327–337

    Google Scholar 

  • Heming TA, Buddington RK (1988) Yolk absorption in embryonic and larval fishes. In: Hoar WS, Randall DJ (eds) Fish physiology: Volume XI, The physiology of developing fish. Part A: eggs and larvae. Academic Press Inc., San Diego, pp 407–446

  • Hjort J (1914) Fluctuations in the great fisheries of northern Europe. Rapp P-v Réun Cons Int Explor Mer 20:1–228

    Google Scholar 

  • Hodge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. In: Whistler RL, Wolfram ML (eds) Methods in carbohydrate chemistry, vol 1. Academic Press Inc., New York, pp 380–394

    Google Scholar 

  • Houde ED (2002) Mortality. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 64–87

    Google Scholar 

  • Houlihan DF, Pedersen BH, Steffensen JF, Brechin J (1995) Protein synthesis, growth and energetics in larval herring (Clupea harengus) at different feeding regimes. Fish Physiol Biochem 14(3):195–208

    Article  CAS  PubMed  Google Scholar 

  • Illing B, Downie AT, Beghin M, Rummer JL (2020) Critical thermal maxima of early life stages of three tropical fishes: effects of rearing temperature and experimental heating rate. J Thermal Biol 90:102582

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [core writing team: Pachauri RK, Meyer LA (eds)]. IPCC, Geneva

  • Isla F, Bujalesky G, Coronato A (1999) Procesos estuarinos en el Canal Beagle, Tierra del Fuego. Rev Asoc Geol Argent 54(4):307–318

    Google Scholar 

  • Jaroszewska M, Dabrowski K (2011) Utilization of yolk: transition from endogenous to exogenous nutrition in fish. In: Holt GJ (ed) Larval fish nutrition. John Wiley & Sons, Chichester, pp 183–218

    Chapter  Google Scholar 

  • Kaartvedt S, Aksnes DL (1992) Does freshwater discharge cause mortality of fjord-living zooplankton? Estuar Coast Shelf Sci 34(3):305–313

    Article  CAS  Google Scholar 

  • Kalaimani N, Chakravarthy N, Shanmugham R, Thirunavukkarasu AR, Alavandi SV, Santiago TC (2008) Anti-oxidant status in embryonic, post-hatch and larval stages of Asian seabass (Lates calcarifer). Fish Physiol Biochem 34(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Kamler E (1992) Early life history of fish: an energetics approach. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Kamler E (2008) Resource allocation in yolk-feeding fish. Rev Fish Biol Fisher 18(2):143–200

    Article  Google Scholar 

  • Kellermann A (1990) Catalogue of early life stages of Antarctic notothenioid fishes. Ber Polarforsch 67:45–136

    Google Scholar 

  • King M, Sardella B (2017) The effects of acclimation temperature, salinity, and behavior on the thermal tolerance of Mozambique tilapia (Oreochromis mossambicus). J Exp Zool A 327(7):417–422

    Article  CAS  Google Scholar 

  • Klimogianni A, Koumoundouros G, Kaspiris P, Kentouri M (2004) Effect of temperature on the egg and yolk-sac larval development of common pandora. Pagellus Erythrinus Mar Biol 145(5):1015–1022

    Article  Google Scholar 

  • Komoroske LM, Connon RE, Lindberg J, Cheng BS, Castillo G, Hasenbein M, Fangue NA (2014) Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv Physiol 2(1):1–13

    Article  CAS  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  CAS  Google Scholar 

  • Kunz YW (2004) Developmental biology of teleosts fishes. Chapter 3. Spinger, Dordrecht, pp 23–40

  • Lahnsteiner F, Patarnello P (2003) Investigations on the metabolism of viable and nonviable gilthead sea bream (Sparus aurata) eggs. Aquaculture 223(1–4):159–174

    Article  CAS  Google Scholar 

  • Landaeta MF, López G, Suárez-Donoso N, Bustos CA, Balbontín F (2012) Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. Environ Biol Fish 93(1):73–87

    Article  Google Scholar 

  • Landsman SJ, Gingerich AJ, Philipp DP, Suski CD (2011) The effects of temperature change on the hatching success and larval survival of largemouth bass Micropterus salmoides and smallmouth bass Micropterus dolomieu. J Fish Biol 78(4):1200–1212

    Article  CAS  PubMed  Google Scholar 

  • Lattuca ME, Boy CC, Vanella FA, Barrantes ME, Fernández DA (2018) Thermal responses of three native fishes from estuarine areas of the Beagle Channel, and their implications for climate change. Hydrobiologia 808(1):235–249

    Article  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41(2):271–283

    Article  CAS  Google Scholar 

  • Lesser MP (2012) Oxidative stress in tropical marine ecosystems. In: Abele D, Zenteno-Savín T, Vazquez-Medina J (eds) Oxidative stress in aquatic ecosystems. John Wiley & Sons Ltd., Chichester, pp 9–19

    Google Scholar 

  • Linares-Casenave J, Werner I, Van Eenennaam JP, Doroshov SI (2013) Temperature stress induces notochord abnormalities and heat shock proteins expression in larval green sturgeon (Acipenser medirostris Ayres 1854). J Appl Ichthyol 29(5):958–967

    Article  CAS  Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75(10):1561–1574

    Article  Google Scholar 

  • Madeira D, Costa PM, Vinagre C, Diniz MS (2016) When warming hits harder: survival, cellular stress and thermal limits of Sparus aurata larvae under global change. Mar Biol 163(4):91

    Article  Google Scholar 

  • Metzger DC, Healy TM, Schulte PM (2016) Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of three spine stickleback (Gasterosteus aculeatus). J Comp Physiol B 186(7):879–889

    Article  CAS  PubMed  Google Scholar 

  • Miller BS, Kendall AW Jr (2009) Early life history of marine fishes. University of California Press, Berkeley

    Book  Google Scholar 

  • Morales-Nin B, Palomera I, Busquets X (2002) A first attempt at determining larval growth in three Antarctic fish from otoliths and RNA/DNA ratios. Polar Biol 2(5):360–365

    Article  Google Scholar 

  • Moyano M, Illing B, Christiansen L, Peck MA (2018) Linking rates of metabolism and growth in marine fish larvae. Mar Biol 165(1):5

    Article  Google Scholar 

  • Moyano M, Illing B, Peschutter P, Huebert KB, Peck MA (2016) Thermal impacts on the growth, development and ontogeny of critical swimming speed in Atlantic herring larvae. Comp Biochem Physiol a: Mol Integr Physiol 197:23–34

    Article  CAS  Google Scholar 

  • Moyano M, Candebat C, Ruhbaum Y, Alvarez-Fernandez S, Claireaux G, Zambonino-Infante JL, Peck MA (2017) Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PloS One 12(7):e0179928

  • Mourente G, Tocher DR, Diaz E, Grau A, Pastor E (1999) Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture 179(1–4):309–324

    Article  CAS  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9(3):261–285

    Article  Google Scholar 

  • Navarro JM, Paschke K, Ortiz A, Vargas-Chacoff L, Pardo LM, Valdivia N (2019) The Antarctic fish Harpagifer antarcticus under current temperatures and salinities and future scenarios of climate change. Progr Oceanogr 174:37–43

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Olivar MP, Diaz MV, Chícharo MA (2009) Tissue effect on RNA:DNA ratios of marine fish larvae. Sci Mar 73(S1):171–182

  • Pedersen BH (1997) The cost of growth in young fish larvae, a review of new hypotheses. Aquaculture 155(1–4):259–269

    Article  Google Scholar 

  • Pimentel MS, Faleiro F, Marques T, Bispo R, Dionísio G, Faria AM, Machado J, Peck MA, Pörtner H, Pousão-Ferreira P, Gonçalves EJ, Rosa R (2016) Foraging behaviour, swimming performance and malformations of early stages of commercially important fishes under ocean acidification and warming. Clim Change 137(3–4):495–509

    Article  CAS  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Pӧrtner HO, Peck MA (2011) Effects of climate change. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 1738–1745

    Chapter  Google Scholar 

  • R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rae GA, Calvo J (1995) Annual gonadal cycle and reproduction in Patagonotothen tessellata (Richardson, 1845) (Nototheniidae: Pisces) from the Beagle Channel. Argentina J Appl Ichthyol 11(1–2):60–70

    Article  Google Scholar 

  • Rae GA, Calvo J (1996) Histological analysis of gonadal development in Patagonotothen tessellata (Richardson 1845) (Nototheniidae: Pisces) from the Beagle Channel. Argentina J Appl Ichthyol 12(1):31–38

    Article  Google Scholar 

  • Rae GA, San Roman NA, Spinoglio DE (1999) Age validation and growth of yolked larvae of Patagonotothen tessellata (Richardson, 1845) (Pisces: Nototheniidae) from the rocky littoral of the Beagle Channel, Argentina. Sci Mar 63(S1):469–476

  • Regoli F, Benedetti M, Krell A, Abele D (2012) Oxidative challenges in polar seas. In: Abele D, Zenteno-Savín T, Vazquez- Medina J (eds) Oxidative stress in aquatic ecosystems. John Wiley & Sons Ltd., Chichester, pp 20–40

    Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Meth Enzymol 233:357–363

    Article  CAS  Google Scholar 

  • Richardson J (1844–48) Ichthyology of the voyage of HMS. Erebus & Terror, under the command of Captain Sir James Clark Ross, RN, FRS. In: Richardson J, Gray JE (eds) The zoology of the voyage of HMS Erebus & Terror, under the command of Captain Sir JC Ross, RN, FRS, during the years 1839 to 1843. EW Janson, London, pp 1–139

  • Vetter RD, Hodson RD, Arnold C (1983) Energy metabolism in a rapidly developing marine fish Egg, the red drum (Sciaenops ocellata). Can J Fish Aquat Sci 40(5):627–634

    Article  CAS  Google Scholar 

  • Werner RG (2002) Habitat requirements. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 161–182

    Google Scholar 

  • Węslawski JM, Legezyńska J (1998) Glaciers caused zooplankton mortality? J Plankton Res 20(7):1233–1240

    Article  Google Scholar 

  • Westerman M, Holt GJ (1994) RNA:DNA ratio during the critical period and early larval growth of the red drum Sciaenops ocellatus. Mar Biol 121(1):1–9

    Article  CAS  Google Scholar 

  • Yúfera M, Darias MJ (2007) The onset of exogenous feeding in marine fish larvae. Aquaculture 268(1–4):53–63

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to authorities of “Secretaría de Ambiente, Desarrollo Sostenible y Cambio Climático” (Argentina) and of “Administración de Parques Nacionales” (Tierra del Fuego, Argentina) for sampling permissions (RSPAyS N° 0298/2016 and 099-CPA-2016, respectively). We also acknowledge J. Strahl for suggestions on the experimental design, D. Aureliano for field assistance, and three anonymous reviewers for useful comments on an early draft. This study was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-FONCyT, Argentina) PICT 0900/2015, from Universidad Nacional de Tierra del Fuego (UNTDF, Argentina) PIDUNTDF-B-2016, and from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) PIP 0440 2016–2018 and P-UE CADIC-CONICET 2016.

Funding

This study was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-FONCyT, Argentina) PICT 0900/2015, from Universidad Nacional de Tierra del Fuego (UNTDF, Argentina) PIDUNTDF-B-2016, and from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) PIP 0440 2016–2018 and P-UE CADIC-CONICET 2016.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. D.O. Bruno did the data collection. D.O. Bruno, M.E. Barrantes, M.E. Lattuca, C.F. Nardi, M.V. Diaz, L. Wolinski, and H. Sacristán performed material preparation and analysis. The first draft of the manuscript was written by D.O Bruno, F.A. Vanella, and D.A. Fernández, and all authors commented on previous versions. All authors read and approved the final manuscript and agreed to submit the work to this journal.

Corresponding author

Correspondence to Daniel Osvaldo Bruno.

Ethics declarations

Ethics approval

All sampling procedures and experimental manipulations follow the guidelines approved by the Universidad de Buenos Aires from Argentina (Facultad de Ciencias Exactas y Naturales, Bioterio Central,https://exact as.uba.ar/cicual /).

Consent to participate

All authors agreed to participate and contributed to the study conception and design. Also, all authors commented on previous versions of the manuscript.

Consent for publication

All authors read and approved the final manuscript and agreed to submit the work to this Journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, D.O., Barrantes, M.E., Lattuca, M.E. et al. Temperature and salinity effects on whole-organism and cellular level stress responses of the sub-Antarctic notothenioid fish Patagonotothen cornucola yolk-sac larvae. Fish Physiol Biochem 48, 321–335 (2022). https://doi.org/10.1007/s10695-022-01057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01057-5

Keywords

Navigation