Skip to main content
Log in

Effects of hypoxia and reoxygenation on gill remodeling, apoptosis, and oxidative stress in hypoxia-tolerant new variety blunt snout bream (Megalobrama amblycephala)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Blunt snout bream plays an important role in freshwater aquaculture in China, but the development of its culture industry has been restricted by increasing hypoxia problem. Through the breeding of wild blunt snout bream populations (F0), a hypoxia-tolerant new variety (F6) was obtained. In this study, the new variety was stressed under low oxygen concentration (2.0 mg·L−1) for 4 and 7 days, the morphological structure of the gill tissue showed a striking change, the interlamellar cell mass (ILCM) volume reduced significantly (P < 0.05), and the lamellar respiratory surface area enlarged significantly (P < 0.05), compared to normoxic controls. After 7 days of oxygen recovery, gill remodeling was completely reversed. Additionally, the TUNEL-positive apoptotic fluorescence signals increased in the gills exposed to hypoxia up to 4 and 7 days; the apoptosis rate also increased significantly (P < 0.05). Under 4 and 7 days of hypoxia stress, the expression of anti-apoptotic gene Bcl-2 in the gills downregulated significantly (P < 0.05), with the significantly (P < 0.05) upregulated expression of pro-apoptotic gene Bad. Furthermore, under hypoxia stress, the activity or content of oxidative stress–related enzymes (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione (GSH)) in gill tissue increased to varying degrees compared to normoxic controls. These results offer a new perspective into the cellular and molecular mechanism of hypoxia-induced gill remodeling in blunt snout bream and a theoretical basis for its hypoxia adaptation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

Download references

Funding

This work was supported by grants from the National Key Research and Development “Blue Granary Technology Innovation” Key Project (Grant Number: 2020YFD0900400), Capacity Building Plan of Shanghai Local Colleges and Universities (Grant Number: 18050501900), and project funded by the China Postdoctoral Science Foundation (Grant Number: 2019M651473).

Author information

Authors and Affiliations

Authors

Contributions

Liang Shuang and Xiao-lei Su carried out the experiment and related analyses. Liang Shuang wrote the manuscript. Shu-ming Zou and Guo-dong Zheng conceived the project and designed scientific objectives. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shu-ming Zou.

Ethics declarations

Ethics approval

All experiments were reviewed and carried out following the Guidelines for Humane Care and Treatment of Experimental Animals for Scientific Research, which drawn up by Ministry of Science and Technology, Beijing, China.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuang, L., Su, Xl., Zheng, Gd. et al. Effects of hypoxia and reoxygenation on gill remodeling, apoptosis, and oxidative stress in hypoxia-tolerant new variety blunt snout bream (Megalobrama amblycephala). Fish Physiol Biochem 48, 263–274 (2022). https://doi.org/10.1007/s10695-022-01047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01047-7

Keywords

Navigation