Skip to main content
Log in

Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

At present, due to the influence of global warming, seasonal change, diurnal variation, and eutrophication of the water body, hypoxia has become one of the major factors limiting the stable development of cobia (Rachycentron canadum) culture. In this study, the miRNAs involved in hypoxia stress were screened, and the target genes of miRNAs were annotated and analyzed. The results showed that a total of 184 conservative microRNA (miRNA) and 121 newly predicted miRNA were obtained by sequencing the liver of control (C) and hypoxic (dissolved oxygen, DO (2.64 ± 0.25) mg/L; 3 h) (S) groups. The pathways involved in energy metabolism included starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). The results indicate that the body maintains physiological activities by regulating some important pathways at the transcriptional level under hypoxia stress, such as the conversion of aerobic metabolism and anaerobic metabolism, the reduction of energy consumption, and the promotion of red blood cell proliferation to maintain the homeostasis of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Upon realistic request, the data supporting this study are accessible from the corresponding author.

Code availability

Not applicable.

References

  • Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, O’Donoghue S, Purca Cuicapusa SR, Rinkevich B, Suga T, Tagliabue A, Williamson P (Lead authors) (2019) Changing ocean, marine ecosystems, and dependent communities. Chapter 5 in: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds), Intergovernmental Panel of Climate Change, IPCC Special Report for the Ocean and Cryosphere in the Changing Climate (Contributing author). https://www.ipcc.ch/srocc/chapter/chapter-5/

  • Bohnsack MT (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191. https://doi.org/10.1261/rna.5167604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9(6):1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Banerjee J, Choi SY et al (2012) miR-210: the master hypoxamir. Microcirculation 19(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shen Y, Wang J, Ouyang G, Kang J, Lv W, … He S (2020) Analysis of multiplicity of hypoxia-inducible factors in the evolution of triplophysa fish (Osteichthyes: Nemacheilinae) reveals hypoxic environments adaptation to Tibetan Plateau. Front Genet, 11. https://doi.org/10.3389/fgene.2020.00433

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8(2):93–103

    Article  CAS  PubMed  Google Scholar 

  • Cooper RU, Clough LM, Farwell MA, West TL (2002) Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J Exp Mar Biol Ecol 279:1–20

    Article  CAS  Google Scholar 

  • Crear DP, Brill RW, Averilla LML, Meakem SC, Weng KC (2020) In the face of climate change and exhaustive exercise: the physiological response of an important recreational fish species. Royal Society Open Science 7(3):200049. https://doi.org/10.1098/rsos.200049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Biol 48:223–250

    Article  CAS  Google Scholar 

  • Ekau W, Auel H, Pörtner H-O, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5):1669–1699. https://doi.org/10.5194/bg-7-1669-2010

    Article  CAS  Google Scholar 

  • Ellefsen SO, Stecyk JAW (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am. J. Physiol.: Regul. Integr Comp Physiol 295:R1803–R1814

    Article  Google Scholar 

  • Fan XY (2015) Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci Rep 5:14728. https://doi.org/10.1038/srep14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Xiao S, Wang Z (2017) 大Transcriptome-wide bioinformatics analysis of miRNA in large yellow croaker Larimichthys crocea. Journal of Jimei University(Natural Science), 22(3): 8-17

  • Flynt AS, Thatcher EJ, Burkewitz K et al (2009) miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol 185(1):115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YS, Shi ZY, Wu ML et al (2011) Identification and differential expression of microRNAs during metamorphosis of the Japanese Flounder (Paralichthys olivaceus). PLoS ONE 6(7):1–11

    Article  Google Scholar 

  • Gobler CJ, Baumann H (2016) Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol Let 12(5):1–8

    Article  Google Scholar 

  • Goodman LR, Campbell JG (2007) Lethal levels of hypoxia for gulf coastestuarine animals. Marine Biol 152:37–42

    Article  Google Scholar 

  • Havel PJ (2004) Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53(suppl 1):S143-151

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    Article  CAS  PubMed  Google Scholar 

  • Huang J-S, Amenyogbe E, Chen G, Wang W-Z (2020) Biochemical composition and activities of digestive and antioxidant enzymes during the egg and yolk-sac larval development of the cobia (Rachycentron canadum). Aquacult Res 1–14. https://doi.org/10.1111/are.15017

  • Huang J, Guo Z, Zhang J, Wang W, Wang Z, Amenyogbe E, Chen G (2021) Effects of hypoxia-reoxygenation conditions on serum chemistry indicators and gill and liver tissues of cobia (Rachycentron canadum). Aquaculture Reports 20:2352–5134. https://doi.org/10.1016/j.aqrep.2021.100692

    Article  Google Scholar 

  • Huang SQ, Cao XJ, Tian XC et al (2016a) High-throughput sequencing identifies microRNAs from posterior intestine of loach (Misgurnus anguillicaudatus) and their response to intestinal air-breathing inhibition. PLoS ONE 11(2):1–19

    Article  Google Scholar 

  • Huang Y, Cheng JH, Luo FN et al (2016b) Genome-wide identification and characterization of microRNA genes and their targets in large yellow croaker (Larimichthys crocea). Gene 576(1):261–267

    Article  CAS  PubMed  Google Scholar 

  • Jibb LA, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211:3111–3122

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia- reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241

    Article  CAS  PubMed  Google Scholar 

  • Li M (2018a) Effects of hypoxia stress on glucose and lipid metabolism and regulation effect of Salidroside in Nile Tilapia[D]. East China Normal University, Shanghai

    Google Scholar 

  • Li X (2018b) Effects of hypoxia stress on energy metabolism, blood index and gene expression of Takifugu obscurus [D]. East China Normal University, Shanghai

    Google Scholar 

  • Liu J, Plagnes-Juan E, Geurden I, Panserat S, Marandel L (2017) Exposure to an acute hypoxic stimulus during early life affects the expression of glucose metabolism-related genes at first-feeding in trout. Sci Rep, 7(1). https://doi.org/10.1038/s41598-017-00458-4

  • Mi X (2014) Expression profiles analysis and target prediction of sexual microRNAs from Strongylocentrotus nudus gonad[D]. Northwest A & F University, Yangling

    Google Scholar 

  • Mircea ILHA, Fabio M, Ritu K (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12:1426–1431

    Article  Google Scholar 

  • Ou Y, Wang X, Wang L, Rousseau AN (2016) Landscape influences on water quality in riparian buffer zone of drinking water source area, Northern China. Env Earth Sci, 75(2). https://doi.org/10.1007/s12665-015-4884-7

  • Parrilla-Taylar DP, Zenteno-Savín T (2011) Antioxidant enzyme activities in Pacific white shrimp (Litopenaeus vannamei) in response to environmental hypoxia and reoxygenation. Aquaculture 318:379–383

    Article  Google Scholar 

  • Pollock MS, Clarke LMJ, Dubé MG (2007) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Env Rev 15(NA):1–14. https://doi.org/10.1139/a06-006

    Article  CAS  Google Scholar 

  • Pollock MS, Clarke LMJ, Dube MG (2007b) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ Rev 15:1–14

    Article  CAS  Google Scholar 

  • Protein that mediates nuclear export of pre-miRNAs[J]. RNA, 2004, 10(2): 185–191

  • Qi PZ, Guo BY, Zhu AY et al (2014) Identification and comparative analysis of the Pseudosciaena crocea microRNA transcriptome response to poly(I:C) infection using a deep sequencing approach. Fish Shellfish Immunol 39(2):483–491

    Article  CAS  PubMed  Google Scholar 

  • Ren Q-y (2018) Study on the effect of hypoxia induced hypoxia physiological stress and the slow-release effects of puerarin and curcumin[D]. Zhejiang Ocean University, Zhoushan

    Google Scholar 

  • Roberts JJ, Brandt SB, Fanslow D, Ludsin SA, Pothoven SA, Scavia D, Höök TO (2011) Effects of hypoxia on consumption, growth, and RNA:DNA ratios of young yellow perch. Trans Am Fish Soc 140(6):1574–1586. https://doi.org/10.1080/00028487.2011.638576

    Article  CAS  Google Scholar 

  • Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6(3):235–246. https://doi.org/10.1158/2159-8290.cd-15-0893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem M, Xiao C, Womack J et al (2010) A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 12(4):410–429

    Article  CAS  Google Scholar 

  • Schulte LN, Eulalio A, Mollenkopf HJ et al (2011) Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 30(10):1977–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24(2):97–106. https://doi.org/10.1152/physiol.00045.2008

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Li X, Jia Y, Piazza GA, Xi Y (2013) Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin 34(3):336–341. https://doi.org/10.1038/aps.2012.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    CAS  PubMed  Google Scholar 

  • Sun J (2015) Differential expression of liver steatosis-related genes and miRNAs ini liver and verified target genes of mir-33 from Ctenopharyngodon idella[D]. Henan Normal University, Xinxiang

    Google Scholar 

  • Sun S, Xuan F, Ge X, Zhu J, Zhang W (2017) Dynamic mRNA and miRNA expression analysis in response to hypoxia and reoxygenation in the blunt snout bream (Megalobrama amblycephala). Sci Rep, 7(1). https://doi.org/10.1038/s41598-017-12537-7

  • Suzuki HI, Katsura A, Matsuyama H, Miyazono K (2014) MicroRNA regulons in tumor microenvironment. Oncogene 34(24):3085–3094. https://doi.org/10.1038/onc.2014.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse ACK, Li JW, Wang SY et al (2016) Hypoxia alters testicular functions of marine medaka through microRNAs regulation. Aquat Toxicol 180:266–273

    Article  CAS  PubMed  Google Scholar 

  • USGS (2008) The Gulf of Mexico hypoxic zone

  • USGS (2000) Restoring life to the dead zone: addressing Gulf hypoxia, a national problem

  • Victor A (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  Google Scholar 

  • Wang H, Wei HL, Tang L et al (2018a) Identification and characterization of miRNAs in the gills of the mud crab (Scylla paramamosain) in response to a sudden drop in salinity. BMC Genomics 19(1):1–12

    Google Scholar 

  • Wang W, Zhong P, Yi JQ et al (2018b) Potential role for microRNA in facilitating physiological adaptation to hypoxia in the Pacific whiteleg shrimp Litopenaeus vannamei. Fish Shellfish Immunol 84:361–369

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2016) Analysis of miRNA expression profile and SOD gene expression in the gills of the eel (Anguilla marmorata) under different salinities [D]. East China Normal University, Shanghai

    Google Scholar 

  • Wu RS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  CAS  PubMed  Google Scholar 

  • Wu RSS (2009) Chapter 3 Effects of hypoxia on fish reproduction and development. Hypoxia, 79–141. https://doi.org/10.1016/s1546-5098(08)00003-4

  • Xiao W (2015a) The hypoxia signaling pathway and hypoxic adaptation in fishes. Sci China Life Sci 58:148–155

    Article  CAS  PubMed  Google Scholar 

  • Xiao W (2015b) The hypoxia signaling pathway and hypoxic adaptation in fishes. Science China Life Sciences 58(2):148–155. https://doi.org/10.1007/s11427-015-4801-z

    Article  CAS  PubMed  Google Scholar 

  • Xu H (2014) MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1 alpha. PLoS ONE 9:e115565. https://doi.org/10.1371/journal.pone.0115565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi SK, Gao ZX, Zhao HH et al (2013) Identification and characterization of microRNAs involved in growth of blunt snout bream (Megalobrama amblycephala) by Solexa sequencing. BMC Genomics 14(1):1–12

    Article  Google Scholar 

  • Yoann T, Jonathan F-S-M, Denis C et al (2019) Effects of hypoxia on metabolic functions in marine organisms: observed patterns and modelling assumptions within the context of dynamic energy budget (DEB) theory. J Sea Res 143(1):231–242

    Google Scholar 

  • Yu RM (2012) Leptin-mediated modulation of steroidogenic geneexpression in hypoxic zebrafish embryos: implications for the disruption ofsex steroids. Environ Sci Technol 46:9112–9119

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Wu J, Xu W, Nie H, Zhou R, Wang R, Liu Y, Tang G, Wu J (2018) Salvanic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway. Cell Death Dis 9(6):599

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G (2017) Study on the molecular mechanism of Pelteobagrus vachelli in response to hypoxia stress [D]. Nanjing Normal University, Nanjing

    Google Scholar 

  • Zhang G, Yin S, Mao J, Liang F, Zhao C, Li P, Zhou G, Chen S, Tang Z (2016) Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia. Sci Rep 6(1):22907. https://doi.org/10.1038/srep22907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ludsin SA, Mason DM, Adamack AT, Brandt SB, Zhang X, … Boicourt WC (2009) Hypoxia-driven changes in the behavior and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. J Exp Mar Biol Ecol, 381, S80–S91. https://doi.org/10.1016/j.jembe.2009.07.014

  • Zhao XL, Yu H, Kong LF et al (2016) High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep 6(1):1161–1167

    Google Scholar 

  • Zhou X (2014) Recognition, identification and comparative genomic analysis of amphioxus microRNA and its anabolism-related proteins [D]. Nanjing Normal University, Nanjing

    Google Scholar 

  • Zhu C-D, Wang Z-H, Yan B (2013) Strategies for hypoxia adaptation in fish species: a review. J Comp Physiol B 183(8):1005–1013. https://doi.org/10.1007/s00360-013-0762-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from China Agriculture Research System of MOF and MARA (CARS-47) and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (ZJW-2019–06).

Author information

Authors and Affiliations

Authors

Contributions

J.-S.H. and H.-J.L: project administration, data collection, formal analysis, processing and writing—original draft preparation; Z.-S.G.: data collection, data processing; J.-D.Z.: supervision, validation; W.-Z.W.: data collection, data processing; Z.-L.W.: supervision, validation; E.A.: formal analysis, writing—reviewing and editing; and G.C.: conceptualization, methodology, funding acquisition, resources.

Corresponding authors

Correspondence to Eric Amenyogbe or Gang Chen.

Ethics declarations

Ethics statement

In accordance with the regulations for the administration of laboratory animals in Guangdong province, China, this study was conducted compliance with the Guangdong Ocean University Research Council’s guide for the care and use of laboratory animals. Fish were killed with ethyl-3-aminobenzoate methanesulfonate (MS-222; Sigma, USA), for tissue collection.

Consent to participate

All authors voluntarily consent to participate.

Consent for publication

All authors voluntarily consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Js., Li, Hj., Guo, Zx. et al. Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress. Fish Physiol Biochem 47, 1951–1967 (2021). https://doi.org/10.1007/s10695-021-01017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-01017-5

Keywords

Navigation