Improvement in the growth status and carbohydrate utilization of Labeo rohita (Hamilton, 1822) fingerlings with dietary supplementation of chromium picolinate

Abstract

A 60-day feeding experiment was conducted to evaluate the effects of dietary chromium (Cr) on carbohydrate utilization and growth performance of Labeo rohita fingerlings. Fishes were fed with four high carbohydrate (53%), isonitrogenous (crude protein 35%), and isocaloric (415 Kcal, 100 gm−1) experimental diets containing different levels of dietary chromium picolinate (Cr-Pic) viz.0, 400, 800, and 1200 μg kg−1 diet. Weight gain (WG%), specific growth rate (SGR), feed efficiency ratio (FER), and protein efficiency ratio (PER) were significantly increased at 800 μg kg−1 diet chromium supplementation (P < 0.05). Cr-Pic supplementation (800 μg kg−1) also significantly (P < 0.05) enhanced the protein: DNA ratio in muscle, while DNA: RNA and DNA: tissue ratios were significantly (P < 0.05) decreased indicating higher growth. Significantly higher amylase, protease, and lipase activities were recorded in 800 μg Cr-Pic kg−1 diet fed fishes (P < 0.05), while any of the experimental groups showing no significant (P > 0.05) change in hexokinase activity, indicating normal glycolysis in all. Furthermore, significant (P < 0.05) decrease of glucose-6-phospatase activity in 800 μg Cr-Pic kg−1 diet fed group, showcasing an evidence for protein-sparing action with Cr-Pic supplementation. Significantly (P < 0.05) higher serum insulin and liver glycogen in 800 μg Cr-Pic kg−1 diet fed fishes denote an improvement in carbohydrate metabolism. However, significantly (P < 0.05) higher ATPase and SOD activities were also observed when chromium supplementation was more than 800 μg kg−1 diet, indicating stress at higher level. The present study indicates that growth and carbohydrate utilization can significantly (P < 0.05) be improved by feeding the L. rohita fingerlings with Cr-Pic (800 μg kg−1 diet) supplemented diet in laboratory condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The data would be made available as and when required.

References

  1. Alexander C, Sahu NP, Pal AK, Akhtar MS, Saravanan S, Xavier B, Munilkumar S (2011) Higher water temperature enhances dietary carbohydrate utilization and growth performance in Labeo rohita (Hamilton) fingerlings. J Anim Physiol Anim Nutr 95(5):642–652. https://doi.org/10.1111/j.1439-0396.2010.01095.x

    CAS  Article  Google Scholar 

  2. Ali MY, Fawad M, Haseeb A, Rehman UH, Afridi AJ, Akhtar N (2017) Acute toxicity and bioaccumulation of chromium in gills, skin and intestine of goldfish (Carassius auratus). Journal of Entomology and Zoology Studies. 5(1):568–571

    Google Scholar 

  3. Anderson R (1987) Chromium. In: Trace elements in human and animal nutrition, Mertz, M. (Ed.). 5th Edn, Academic Press Inc, San Diego, CA 225-244. ISBN-10: 012491252

  4. Anderson RA, Polansky MM (1981) Dietary chromium deficiency: effect on sperm count and fertility in rats. Biological Trace Element Research 3:1–5. https://doi.org/10.1007/BF02789119

    CAS  Article  PubMed  Google Scholar 

  5. Anderson J, Jackson AJ, Matty AJ, Capper BS (1984) Effects of dietary carbohydrate and fibre on the tilapia, Oreochromis niloticus (Linn.). Aquaculture 37:303–314. https://doi.org/10.1016/0044-8486(84)90296-5

    CAS  Article  Google Scholar 

  6. Anderson EA, Hoffman RP, Balor TW, Sinkey CA, Mark AL (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87:2246–2252. https://doi.org/10.1172/JCI115260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. AOAC International (1995) Official methods of analysis of AOAC International. 2 vols 16th edition, Arlington, VA, USA, Association of Analytical Communities.

  8. Asad F, Mubarik MS, Ali T, Zahoor MK, Ashrad R, Qamer S (2019) Effect of organic and in-organic chromium supplementation on growth performance and genotoxicity of Labeo rohita. Saudi Journal of Biological Sciences 26(6):1140–1145. https://doi.org/10.1016/j.sjbs.2018.12.015

    CAS  Article  PubMed  Google Scholar 

  9. Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6þ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158e167. https://doi.org/10.1016/j.aquatox.2018.05.001

    CAS  Article  Google Scholar 

  10. Bolasina S, Perez A, Yamashita Y (2006) Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252:503–515. https://doi.org/10.1016/j.aquaculture.2005.07.015

    CAS  Article  Google Scholar 

  11. Bosgelmez II, Guvendik G (2004) Effects of taurine on oxidative stress parameters and chromium levels altered by acute hexavalent chromium exposure in mice kidney tissue. Biol Trace Elem Res 102:209–225. https://doi.org/10.1385/BTER:102:1-3:209

    CAS  Article  PubMed  Google Scholar 

  12. Brownsey RW, Edgell NJ, Hepkirk TJ, Denton RM (1984) Studies of insulin stimulated phosphorylation of acetyl-CoA carboxylase, ATP citrate lyase and other proteins in rat epididymal adipose tissue. Biochem J 218(3):733–743. https://doi.org/10.1042/bj2180733

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Cao J, Li LX, Wu X, Bi R, Klerks P, Xie L (2016) Maternal transfer and reproductive effects of Cr (VI) in Japanese medaka (Oryzias latipes) under acute and chronic exposures. Aquatic Toxicology (Amsterdam, Netherlands) 171:59–68. https://doi.org/10.1016/j.aquatox.2015.12.011

    CAS  Article  Google Scholar 

  14. Cherry IS, Crandall LA Jr (1932) The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. Am J Physiol 100:266–273. https://doi.org/10.1152/ajplegacy.1932.100.2.266

    CAS  Article  Google Scholar 

  15. Cho CY, Kaushik SJ (1990) Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). In: Bourne, GH (Ed.), Aspects of food production, consumption and energy values. World Rev Nutr Diet, Karger, Base l61: 132-172. 10.1159/000417529

  16. Correia JE, Christofoletti CA, Rodríguez YA, Guedes TA, Fontanetti CS (2017) Comet assay and micronucleus tests on Oreochromis niloticus (Perciformes: Cichlidae) exposed to raw sugarcane vinasse and to physicochemical treated vinasse by pH adjustment with lime (CaO). Chemosphere 173:494e501. https://doi.org/10.1016/j.chemosphere.2017.01.025

    CAS  Article  Google Scholar 

  17. Crane RK, Sols A (1955) Hexokinase in animal tissue. In: Methods in Enzymology (Ed. S.P. Colowick and N.O. Kalpan). Vol. I, Academic Press Inc., New York, USA. pp. 277-279.

  18. Darrin JC, Mark AS (1993) Insulin stimulates hepatic lipogenesis in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 11:421–428. https://doi.org/10.1007/BF00004592

    Article  Google Scholar 

  19. De Silva SS, Gunasekera RM, Shim KF (1991) Interactions of varying dietary protein and lipid levels in young red tilapia, evidence of protein sparing. Aquaculture 95:305–318. https://doi.org/10.1016/0044-8486(91)90096-P

    Article  Google Scholar 

  20. Demoss RD, Gunsalus IC, Bard RC (1953) G6PD in Leuconostoc mesenteroides. Journal of Bacteriology 66:10–16

    CAS  Article  Google Scholar 

  21. Denton RM, Halestrap AP (1979) Regulation of pyruvate metabolism in mammalian tissue. Essays Biochem 15:37–77

    CAS  PubMed  Google Scholar 

  22. Drapeau G (1974) Protease from Staphylococcus aureus. In: Lorand L (ed) Methods in enzymology, vol 45B. Academic Press, New York, USA, p 469

    Google Scholar 

  23. Duguay SJ, Mommsen TP (1994) Molecular endocrinology of fish. Fish physiology, Vol. XIII. In: Sherwood NM, Hew CL (eds) Molecular aspects of pancreatic peptides. Academic, San Diego, CA, pp 225–271

    Google Scholar 

  24. Dwivedi S, Chezhian A, Kabilan N, Kumar TS (2012) Synergistic effect of mercury and chromium on the histology and physiology of fish, Tilapia mossambica (Peters, 1852) and Lates calcarifer (Bloch, 1790). Toxicol Int 19(3):235–240. https://doi.org/10.4103/0971-6580.103655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Erfanullah JAK (1993) Effects of dietary carbohydrate level on the growth and conversion efficiency of the Indian major carp fingerling, Labeo rohita (Ham.): a preliminary study. Asian Fish Sci 6:249–254

    Google Scholar 

  26. Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250. https://doi.org/10.1016/0162-0134(92)80034-s

    CAS  Article  PubMed  Google Scholar 

  27. Feng M, Yin H, Peng H, Liu Z, Lu G, Dang Z (2017) Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environ Pollut 228:128e139–128e139. https://doi.org/10.1016/j.envpol.2017.05.012

    CAS  Article  Google Scholar 

  28. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Article  Google Scholar 

  29. Foster FS, Pavlin CJ, Lockwood GR, Ryan LK, Harasiewicz KA, Berube LR, Rauth AM (1993) Principles and applications of ultrasound backscatter microscopy. IEEE Trans Ultrason Ferroelec Freq Control 40:608–617. https://doi.org/10.1109/58.238115

    CAS  Article  Google Scholar 

  30. Gang X, Zirong X, Si HW, Shijiang C (2001) Effects of chromium picolinate on growth performance, carcass characteristics, serum metabolites and metabolism of lipid in pigs. Asian Aust J Anim 14(2):258–262. https://doi.org/10.5713/ajas.2001.258

    Article  Google Scholar 

  31. Gatta PP, Piva A, Paolini M, Testi S, Bonaldo A, Antelli A, Mordenti A (2001) Effects of dietary organic chromium on gilthead seabream (Sparus aurata L.) performances and liver microsomal metabolism. Aquac Res 32(suppl. 1):60–69. https://doi.org/10.1046/j.1355-557x.2001.00005.x

    CAS  Article  Google Scholar 

  32. Giri AK, Sahu NP, Saharan N, Dash G (2014) Effect of dietary supplementation of chromium on growth and biochemical parameters of Labeo rohita (Hamilton) fingerlings. Indian J Fish 61(2):73–81

    Google Scholar 

  33. Gray WE, Bowman TD (1992) Chromium picolinate increase membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250. https://doi.org/10.1016/0162-0134(92)80034-S

    Article  Google Scholar 

  34. Halver JE (1976) The nutritional requirements of cultivated warm water and coldwater fish species. Paper No 31. FAO Technical Conference on Aquaculture, Kyoto, 26 May to 2 June 1976, pp.9.

  35. Handa K, Jindal R (2020) Genotoxicity induced by hexavalent chromium leading to eryptosis in Ctenopharyngodon idellus. Chemosphere 247:125967. https://doi.org/10.1016/j.chemosphere.2020.125967

    CAS  Article  PubMed  Google Scholar 

  36. Hassid WJ, Abraham S (1957) Chemical procedure for analysis of polysaccharides. In: Methods in enzymology (Ed. S.P. Colowick and N.O. Kalpan). Vol III, Academic Press Inc., New York, USA. pp. 35-36.

  37. Hasting WH (1969) Nutritional score. In Fish in research. (Ed. OW Newhaus and JE Halver). Academic Press, New York, pp.263-292.

  38. Hastuti S, Subandiyono S (2014) Production performance of African catfish (Clarias gariepinus, burch) were rearing with biofloc technology. SAINTEK PERIKANAN: Indonesian Journal of Fisheries Science and Technology 10(1): 37-42. https://doi.org/10.14710/ijfst.10.1.37-42

  39. Hemre GI, Hansen T (1998) Utilization of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parr–smolt transformation. Aquaculture 161:145–157. https://doi.org/10.1016/S0044-8486(97)00266-4

    CAS  Article  Google Scholar 

  40. Hertz Y, Mader Z, Hepher B, Gertler A (1989) Glucose metabolism in the common carp (Cyprinus carpio L.): the effect of cobalt and chromium. Aquaculture 76:255–267. https://doi.org/10.1016/0044-8486(89)90079-3

    CAS  Article  Google Scholar 

  41. Isaia J, Masoni A (1976) The effects of calcium and magnesium on water and ionic permeabilities in the sea water adapted eel, Anguilla anguilla L. J Comp Physiol 109:221–233. https://doi.org/10.1007/BF00689420

    CAS  Article  Google Scholar 

  42. Jacques K, Stewart S (1993) Does chromium have a future in feed? J Feed Tech Market Vol 44(2)

  43. Jain KK, Sinha A, Srivastava PP, Berendra DK (1994) Chromium: an efficient growth enhancer in Indian major carp (Labeo rohita). J Aqua Trop 9:49–54

    Google Scholar 

  44. Kegley EB, Spears JW, Brown TT Jr (1997) Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J Anim Sci 75:1956–1964. https://doi.org/10.2527/1997.7571956x

    CAS  Article  PubMed  Google Scholar 

  45. Kim J, Kang J (2016) Oxidative stress, neurotoxicity and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr6+) exposure. Ecotoxicology and Environmental Safety 125:78–84. https://doi.org/10.1016/j.ecoenv.2015.12.001

    CAS  Article  PubMed  Google Scholar 

  46. Krogdahl A, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in post larval stages. Aquac Nutr 11:103–122. https://doi.org/10.1111/j.1365-2095.2004.00327.x

    CAS  Article  Google Scholar 

  47. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr(III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comparative Biochemistry and Physiology Part C 152(3):360–370. https://doi.org/10.1016/j.cbpc.2010.06.003

    CAS  Article  PubMed  Google Scholar 

  48. Kumar S, Sahu NP, Pal AK, Sagar V, Sinha AK, Baruah K (2009) Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous a-amylase in the diet. Fish Physiol Biochem 35:301–315. https://doi.org/10.1007/s10695-008-9213-6

    CAS  Article  PubMed  Google Scholar 

  49. Lambert B, Jacquemin C (1979) Inhibition of epinephrine induced lipolysis in isolated white adipocytes of aging rabbits by increased alphaadrenergic responsiveness. Journal of Lipid Research 20:208–216

  50. Lee SM, Kim KD, Lall SP (2003) Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture 221:427–438. https://doi.org/10.1016/S0044-8486(03)00061-9

    CAS  Article  Google Scholar 

  51. Lien TF, Horng YM, Yang KH (1999) Performance, serum characteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate. Br Poult Sci 40(3):357–363. https://doi.org/10.1080/00071669987458

    CAS  Article  PubMed  Google Scholar 

  52. Lin JH, Cui Y, Hung SSO, Shiau SY (1997) Effect of feeding strategy and carbohydrate source on carbohydrate utilization by white sturgeon (Acipenser transmontanus) and hybrid tilapia (Oreochromis niloticus X Oreochromis. aureus). Aquaculture 148:201–211. https://doi.org/10.1016/S0044-8486(96)01420-2

    CAS  Article  Google Scholar 

  53. Liu T, Wen H, Jiang M, Yuan D, Gao P, Zhao Y, Wu F, Liu W (2010) Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus. Fish Physiol Biochem 36(3):565–572. https://doi.org/10.1007/s10695-009-9327-5

    CAS  Article  PubMed  Google Scholar 

  54. Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009a) Chromium(III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93:45–52. https://doi.org/10.1016/j.aquatox.2009.03.007

    CAS  Article  PubMed  Google Scholar 

  55. Lushchak OV, Kubrak OI, Torous IM, Nazarchuk TY, Storey KB, Lushchak VI (2009b) Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere 75:56–62. https://doi.org/10.1016/j.chemosphere.2008.11.052

    CAS  Article  PubMed  Google Scholar 

  56. Marjorie AS (1964) In: Methods in Enzymology (Ed. S.P. Colowick and N.O. Kalpan) Vol. II, Academic Press Inc., New York, USA. pp. 541.

  57. McCarty MF (1991) The case for supplemental chromium and a survey of clinical studies with chromium picolinate. J Appl Nutr 43:58–66

    CAS  Google Scholar 

  58. Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633. https://doi.org/10.1093/jn/123.4.626

    CAS  Article  PubMed  Google Scholar 

  59. Mertz W, Toepfer EW, Roginski EE, Polansky MM (1974) Present knowledge of the role of chromium. Fed Proc 33:2275–2280

    CAS  PubMed  Google Scholar 

  60. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Article  Google Scholar 

  61. Mohapatra M, Sahu NP, Chaudhari A (2003) Utilization of gelatinized carbohydrate in diets in Labeo rohita fry. Aqua Nutr 9:189–196. https://doi.org/10.1046/j.1365-2095.2003.00243.x

    CAS  Article  Google Scholar 

  62. Morita K, Furuichi M, Yone Y (1982) Effect of carboxymethylcellulose supplemented to dextrin containing diets on the growth and feed efficiency of red sea bream. Bull Jpn Sot Sci Fish 48:1617–1620. https://doi.org/10.2331/suisan.48.1617

    CAS  Article  Google Scholar 

  63. Morris BW, Gray TA, Macneil S (1993) Glucose dependent uptake of chromium in human and rat insulin sensitive tissues. Clinical Science 84(4):477–482. https://doi.org/10.1042/cs0840477

    CAS  Article  PubMed  Google Scholar 

  64. Morris GS, Guidry KA, Hegsted M, Hasten DL (1995) Effects of dietary chromium supplementation on cardiac mass, metabolic enzymes and contractile proteins. Nutr Res 15:1045–1052. https://doi.org/10.1016/0271-5317(95)00066-R

    CAS  Article  Google Scholar 

  65. Moutou KA, Panagiotaki P, Mamuris Z (2004) Effects of salinity on digestive protease activity in the euryhaline sparid, Sparus aurata L.: a preliminary study. Aquac Res 35:912–914. https://doi.org/10.1111/j.1365-2109.2004.01068.x

    CAS  Article  Google Scholar 

  66. Newshome EA (1974) Regulation in metabolism. Press, New York, Arrowsmith Co

    Google Scholar 

  67. Ni H, Peng L, Gao X, Ji H, Ma J, Li Y, Jiang S (2019) Effects of maduramicin on adult zebrafish (Danio rerio): acute toxicity, tissue damage and oxidative stress. Ecotoxicology and Environmental Safety 168:249–259. https://doi.org/10.1016/j.ecoenv.2018.10.040

    CAS  Article  PubMed  Google Scholar 

  68. Nisha JC, Sekar RRJ, Chandran R (2016) Acute effect of chromium toxicity on the behavioral response of Zebra fish Danio rerio. International Journal of Plant, Animal and Environmental Sciences 6(2):6–14

    CAS  Google Scholar 

  69. NRC (1989) Recommended dietary allowances. National Academy Press, Washington, DC

    Google Scholar 

  70. Ohba H, Suketa Y, Okada S (1986) Enhancement of in vitro ribonucleic acid synthesis on chromium (III)-bound chromatin. J Inorg Biochem 27:179–189. https://doi.org/10.1016/0162-0134(86)80059-9

    CAS  Article  PubMed  Google Scholar 

  71. Okada S, Suzuki M, Ohba H (1983) Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver. J Inorg Biochem 19:95–103. https://doi.org/10.1016/0162-0134(83)85015-6

    CAS  Article  PubMed  Google Scholar 

  72. Okada S, Tsukada H, Ohba H (1984) Enhancement of nucleo RNA synthesis by chromium (III) in regenerating rat liver. J Inorg Biochem 21: 113–119

  73. Pan Q, Liu S, Tan YG, Bi YZ (2003) The effect of chromium picolinate on growth and carbohydrate utilization in tilapia, Oreochromis niloticus x Oreochromis aureus. Aquaculture 225(1-4):421–429. https://doi.org/10.1016/s0044-8486(03)00306-5

    CAS  Article  Google Scholar 

  74. Pelletier D, Blier UP, Dutil DJ, Guderley H (1995) How should enzyme activities be used in fish growth studies? J Exp Bio l198: 1493-1497.

  75. Post RL, Sen AK (1967) Sodium and potassium-stimulated ATPase. In Methods in enzymology (S. P. Colowick and N. O. Kaplan Eds.) Academic Press. New York 10:762–775

    CAS  Google Scholar 

  76. Press RI, Geller J, Evans GW (1990) The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. The Western J Medic 152:41–45

  77. Rankin JC, Shuttleworth PJ (1982) Effects of pollutants on gill. In: Houlihal DF (Ed). Cambridge University Press, Cambridge, Gills, pp 207–219

    Google Scholar 

  78. Rick W, Stegbauer HP (1974) Amylase measurement of reducing groups. In: Methods of enzymatic analysis (Ed. H.V. Bergmeyer), 2nd edn. Vol. II, Academic Press, New York, USA, pp 885–889

    Google Scholar 

  79. Roginski EE, Mertz W (1969) Effects of chromium (III) supplementation on glucose and amino acid metabolism in rats fed a low protein diet. J Nutr 97:525–530. https://doi.org/10.1093/jn/97.4.525

    CAS  Article  PubMed  Google Scholar 

  80. Rosebrough W, Steele NC (1981) Effect of supplemental dietary chromium or nicotic acid on carbohydrate metabolism during basal, starvation and refeeding periods in poults. Poult Sci 60:407–417. https://doi.org/10.3382/ps.0600407

    CAS  Article  PubMed  Google Scholar 

  81. Sahin K, Kucuk O, Sahin N, Ozbey O (2001) Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone and some metabolites of Japanese quails. Nutr Res 21:1315–1321. https://doi.org/10.1016/S0271-5317(01)00330-X

    CAS  Article  Google Scholar 

  82. Sancho E, Ferrando MD, Andreu E (1997) Inhibition of gill Na+, K+-ATPase activity in the eel, Anguilla anguilla, by fenitrothion. Ecotoxicol Environ Saf 38(2):132–136. https://doi.org/10.1006/eesa.1997.1573

    CAS  Article  PubMed  Google Scholar 

  83. Sargent JR, Bell MV, Killy KF (1980) The nature and properties of sodium ions plus potassium ion activated adenosine triphosphatase and its role in marine salt secreting epithelia. In: Lahlou B (ed) Epithelial transport in the lower vertebrates. Cambridge University Press, London, pp 251–267

    Google Scholar 

  84. SAS (2007) SAS statistical software version 9.1.3. SAS Campus Drive, Cary.

  85. Sastry KV, Gupta PK (1978) Chronic mercuric chloride intoxication in the digestive system of Channa punctatus. J Environ Pathol Toxicol 2(2):443–446

    CAS  PubMed  Google Scholar 

  86. Schneider WC (1957) Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol 3:680–684. https://doi.org/10.1016/S0076-6879(57)03442-4

    Article  Google Scholar 

  87. Seo JY, Lee SM (2008) Effects of dietary macronutrient level and feeding frequency on growth and body composition of juvenile rockfish (Sebastes schlegeli). Aquacult Int 16:551–560. https://doi.org/10.1007/s10499-008-9165-y

    CAS  Article  Google Scholar 

  88. Shan X, Xiao Z, Huang W, Dou S (2008) Effect of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture 281:70–76. https://doi.org/10.1016/j.aquaculture.2008.05.034

    CAS  Article  Google Scholar 

  89. Shiau SY (1997) Utilization of carbohydrates in warmwater fish- with particular reference to tilapia, Oreochromis niloticus X O. aureus. Aquaculture 151(1-4):79–96. https://doi.org/10.1016/S0044-8486(96)01491-3

    Article  Google Scholar 

  90. Shiau SY, Chen MJ (1993) Carbohydrate utilization by tilapia (Oreochromis niloticus x Oreochromis aureus) as influenced by different chromium sources. J Nutr 123:1747–1753. https://doi.org/10.1093/jn/123.10.1747

    CAS  Article  PubMed  Google Scholar 

  91. Shiau SY, Liang HS (1995) Carbohydrate utilization and digestibility by tilapia (Oreochromis niloticus x O. aureus) are affected by chromium oxide inclusion in the diet. J Nutr 125(4):976–982. https://doi.org/10.1093/jn/125.4.976

    CAS  Article  PubMed  Google Scholar 

  92. Shiau SY, Lin SF (1993) Effects of supplementation dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, (Oreochromis niloticus x O. aureus). Aquaculture 110:321–330. https://doi.org/10.1016/0044-8486(93)90379-D

    CAS  Article  Google Scholar 

  93. Shiau SY, Peng CY (1993) Protein-sparing effect by carbohydrates in diets for tilapia, Oreochromis niloticus x O. aureus. Aquaculture 117:327–334

    CAS  Article  Google Scholar 

  94. Shiau SY, Shy SM (1998) Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia (Oreochromis niloticus x O. aureus). Aquaculture 161(1/4):357–364. https://doi.org/10.1016/s0044-8486(97)00283-4

    CAS  Article  Google Scholar 

  95. Shiau SY, Suen GS (1992) Estimation of the niacin requirements for tilapia fed diets containing glucose or dextrin. J Nutr 122:2030–2036. https://doi.org/10.1093/jn/122.10.2030

    CAS  Article  PubMed  Google Scholar 

  96. Singh P, Chowdhuri DK (2018) Modulation of sestrin confers protection to Cr (VI) induced neuronal cell death in Drosophila melanogaster. Chemosphere 191:302e314–302e314. https://doi.org/10.1016/j.chemosphere.2017.10.037

    CAS  Article  Google Scholar 

  97. Skou JC (1974) The (Na++ K+) activated enzyme system and its relationship to transport of sodium and potassium. Q Rev Biophys 7(3):401–434. https://doi.org/10.1017/S0033583500001475

    CAS  Article  PubMed  Google Scholar 

  98. Sridevi B, Reddy LN (2000) Effect of trivalent and hexavalent chromium on carbohydrate metabolism of a freshwater field crab, Barytelphusa guerini. Environ Monit Assess 61:293–302. https://doi.org/10.1023/A:1006198127933

    Article  Google Scholar 

  99. Steele NC, Rosebrough RW (1981) Effects of trivalent chromium on hepatic lipogenesis by the turkey poult. Poult Sci 60:617–622

    CAS  Article  Google Scholar 

  100. Tabinda AB, Bashir S, Yasar A, Hussain M (2013) Metals concentrations in the riverine water, sediments and fishes from river Ravi at Balloki headworks. The journal of animal and plant sciences 23(1):76–84

    CAS  Google Scholar 

  101. Tacon AGJ, Beveridge MM (1982) Effects of dietary trivalent chromium on rainbow trout [Growth, feed conversion]. Nutr Rep Int 25:49–56(1)

    CAS  Google Scholar 

  102. Travacio M, Polo JM, Llesuy S (2001) Chromium (VI) induces oxidative stress in the mouse brain. Toxicology 162:139–148. https://doi.org/10.1016/S0300-483X(00)00254-7

    CAS  Article  PubMed  Google Scholar 

  103. Tung PS, Shiau SY (1991) Effect of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus x O. aureus, fed different carbohydrate diets. Aquaculture 92: 343–350

  104. Ufodike EBC, Matty AJ (1983) Growth response and nutrient digestibility in mirror carp (Cyprinus carpio) fed different levels of cassava and rice. Aquaculture 31:41–50. https://doi.org/10.1016/0044-8486(83)90256-9

    Article  Google Scholar 

  105. Velisek J, Stara A, Li ZH, Silovska S, Turek J (2011) Comparison of the effects of four anaesthetics on blood biochemical profiles and oxidative stress biomarkers in rainbow trout. Aquaculture 310:369–375. https://doi.org/10.1016/j.aquaculture.2010.11.010

    CAS  Article  Google Scholar 

  106. Venugopal NBRK, Reddy SLN (1992) Nephrotoxic and hepatotoxic effects of hexavalent and trivalent chromium in a fresh water teleost Anabas scandens, biochemical and environmental changes. Ecotoxicol Environ Safety 24:287–293. https://doi.org/10.1016/0147-6513(92)90004-M

    CAS  Article  PubMed  Google Scholar 

  107. Wang J, Ai Q, Mai K, Xu H, Zuo R (2014) Dietary chromium polynicotinate enhanced growth performance, feed utilization and resistance to Cryptocaryon irritans in juvenile large yellow croaker (Larmichthys crocea). Aquaculture 432:321–326. https://doi.org/10.1016/j.aquaculture.2014.05.027

    CAS  Article  Google Scholar 

  108. Wang J, Gatlin DM III, Li L, Wang Y, Jin N, Lin H, Zhou C, Huang Z, Yu W, Guo Y (2019) Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate. Aquaculture 505:405–411. https://doi.org/10.1016/j.aquaculture.2019.02.060

    CAS  Article  Google Scholar 

  109. Ward TL, Berrio LF, Southern LL, Fernandez JM, Thompson DL Jr (1994) In-vivo and in-vitro evaluation of chromium tripicolinate on insulin binding in pig liver cell plasma membranes. FASEB Journal 8:A194

    Google Scholar 

  110. Weser U, Koolman J (1970) Reactivity of some transition metals on nuclear protein biosynthesis in rat liver. Experientia 26:246–247. https://doi.org/10.1007/BF01900071

    CAS  Article  PubMed  Google Scholar 

  111. Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80. https://doi.org/10.1016/0044-8486(94)90363-8

    CAS  Article  Google Scholar 

  112. Yengkokpam S, Sahu NP, Pal AK, Mukherjee SC, Debnath D (2007) Gelatinized carbohydrates in the diet of Catla catla fingerlings: effect of levels and sources on nutrient utilization, body composition and tissue enzyme activities. Asian-Aust J Anim Sci 20(1):89–99. https://doi.org/10.5713/ajas.2007.89

    CAS  Article  Google Scholar 

  113. Yu X, Yu R, Gui D, Zhang X, Zhan F, Sun W, Wu Y (2018) Hexavalent chromium induces oxidative stress and mitochondria-mediated apoptosis in isolated skin fibroblasts of Indo-Pacific humpback dolphin. Aquatic Toxicology (Amsterdam, Netherlands) 203: 179–186. https://doi.org/10.1016/j.aquatox.2018.08.012

  114. Zhang X, Shan P, Sasidhar M, Chupp GL, Flavell RA, Choi AMK, Lee PJ (2003) Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol 28(3):305–315. https://doi.org/10.1165/rcmb.2002-0156OC

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Indian Council of Agricultural Research, New Delhi, India for the financial support and to the Central Institute of Fisheries Education, Mumbai, India for providing all the facilities required for the present study.

Funding

The entire set up and experiment were funded by Indian Council of Agricultural Research (ICAR), New Delhi and Central Institute of Fisheries Education (CIFE), Mumbai.

Author information

Affiliations

Authors

Contributions

Abhay Kumar Giri and Narottam Prasad Sahu: conceptualization and designing the experiment; Abhay Kumar Giri: experimental set up and execution; Abhay Kumar Giri and Gyanaranjan Dash: data analysis and manuscript writing; Narottam Prasad Sahu and Gyanaranjan Dash: editing and review of the manuscript.

Corresponding author

Correspondence to Abhay Kumar Giri.

Ethics declarations

Ethics approval and consent to participate

In the present study, the care and treatment of fishes were undertaken in accordance with the guidelines of the CPCSEA [(Committee for the Purpose of Control and Supervision of Experiments on Animals), Ministry of Environment & Forests (Animal Welfare Division), Govt. of India] on care and use of animals in scientific research. The experiment was performed with approval of statutory authorities of ICAR-Central Institute of Fisheries Education, Mumbai, India (Deemed to be University under Sec. 3 of University Grants Commission Act, 1956 and ISO 9001:2015 certified). Furthermore, as the experimental Labeo rohita fish is not an endangered fish, the provisions of the Govt. of India’s Wildlife Protection Act (1972) are not applicable for the experimentation on this fish.

Consent for publication

All the authors are being informed and they have given their consent for the submission of this manuscript to Fish Physiology and Biochemistry journal.

Conflict of interest

Authors bear no conflict of interest in the submission of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giri, A.K., Sahu, N.P. & Dash, G. Improvement in the growth status and carbohydrate utilization of Labeo rohita (Hamilton, 1822) fingerlings with dietary supplementation of chromium picolinate. Fish Physiol Biochem 47, 599–616 (2021). https://doi.org/10.1007/s10695-021-00934-9

Download citation

Keywords

  • Dietary chromium
  • Protein-sparing
  • Carbohydrate metabolism
  • Growth
  • Stress
  • Labeo rohita