Skip to main content
Log in

Grape seed proanthocyanidin extract ameliorates hepatic lipid accumulation and inflammation in grass carp (Ctenopharyngodon idella)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1β, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-β1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ATGL:

Adipose triglyceride lipase

CHOL:

Total cholesterol

CPT1:

Carnitine palmitoyltransferase 1

FABP:

Fatty acids-binding protein

FAS:

Fatty acid synthase

GSPE:

Grape seed procyanidin extract

HDL:

High-density lipoprotein

HFD:

High-fat diet

H-FABP:

Heart-type fatty acid-binding protein

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-10:

Interleukin-10

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

NF-κB:

Nuclear factor-κB

PPAR:

Peroxisome proliferator-activated receptor

SCD1:

Stearoyl-coenzyme A desaturase 1

SREBP-1:

Sterol regulatory element-binding proteins-1

TG:

Triglyceride

TGF-β1:

Transforming growth factor-β1

TNFα:

Tumor necrosis factor α

References

  • Arola-Arnal A, Blade C (2011) Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS One 6:e25982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Salvado MJ, Arola L, Arola-Arnal A (2012) Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 56:1636–1646

    CAS  PubMed  Google Scholar 

  • Cui J, Chu Q, Xu T (2016) miR-122 involved in the regulation of toll-like receptor signaling pathway after Vibrio anguillarum infection by targeting TLR14 in miiuy croaker. Fish Shellfish Immunol 58:67–72

    CAS  PubMed  Google Scholar 

  • Downing LE, Edgar D, Ellison PA, Ricketts ML (2017) Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 35:12–32

    CAS  PubMed  Google Scholar 

  • Du JL, Jia R, Cao LP, Ding WD, Xu P, Yin GJ (2018) Effects of Rhizoma Alismatis extract on biochemical indices and adipose gene expression in oleic acid-induced hepatocyte injury in Jian carp (Cyprinus carpio var. Jian). Fish Physiol Biochem 44:747–768

    CAS  PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    CAS  PubMed  Google Scholar 

  • Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22(2):86–92

    PubMed  PubMed Central  Google Scholar 

  • Gao Z, Liu G, Hu Z, Li X, Yang X, Jiang B, Li X (2014) Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Mol Med Rep 9:801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE (2007) A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165(2):106–116

    PubMed  Google Scholar 

  • Guerrero L, Margalef M, Pons Z, Quiñones M, Arola L, Arola-Arnal A, Muguerzaac B (2013) Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells. J Nutr Biochem 24(12):2092–2099

    CAS  PubMed  Google Scholar 

  • Guicciardi ME, Malhi H, Mott JL, Gores GJ (2013) Apoptosis and necrosis in the liver. Compr Physiol 3:977–1010

    PubMed  Google Scholar 

  • Han J, Xu G, Xu T (2016) The miiuy croaker microRNA transcriptome and microRNA regulation of RIG-I like receptor signaling pathway after poly(I:C) stimulation. Fish Shellfish Immunol 54:419–426

    CAS  PubMed  Google Scholar 

  • Her GM, Hsu CC, Hong JR, Lai CY, Hsu MC, Pang HW, Chan SK, Pai WY (2011) Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta 1811:536–548

    CAS  PubMed  Google Scholar 

  • Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, Shimano H, Matsumura S, Inoue K, Marusawa H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K (2013) MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 4:2883

    PubMed  PubMed Central  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI (2010) MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 51:1513–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang OH, Kim SB, Seo YS, Joung DK, Mun SH, Choi JG, Lee YM, Kang DG, Lee HS, Kwon DY (2013) Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci 17(19):2578–2586

    CAS  PubMed  Google Scholar 

  • Kao TT, Tu HC, Chang WN, Chen BH, Shi YY, Chang TC, Fu TF (2010) Grape seed extract inhibits the growth and pathogenicity of Staphylococcus aureus by interfering with dihydrofolate reductase activity and folate-mediated one-carbon metabolism. Int J Food Microbiol 141:17–27

    CAS  PubMed  Google Scholar 

  • Kenny TP, Keen CL, Schmitz HH, Gershwin ME (2007) Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells. Exp Biol Med 232:293–300

    CAS  Google Scholar 

  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lala V, Minter DA (2018) Liver function tests[M]//StatPearls [Internet]. StatPearls Publishing

  • Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, Hache J (1992) Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25(3):231–243

    CAS  PubMed  Google Scholar 

  • Li SL, Sang CY, Zhang JC, Li ZQ, Chen NS (2018) Molecular cloning, expression profiling of adipose triglyceride lipase (ATGL) and forkhead box O1 (FoxO1), and effects of dietary carbohydrate level on their expression in hybrid grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂ ). Aquaculture 492:103–112

    CAS  Google Scholar 

  • Lu RH, Chang ZG, Sun J, Yang F, Nie GX, Ji H (2016) Molecular cloning, expression and functional characterization of tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) in grass carp, Ctenopharyngodon idella. Fish Shellfish Immunol 57:406–412

    CAS  PubMed  Google Scholar 

  • Mantena SK, Katiyar SK (2006) Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Free Radic Biol Med 40:1603–1614

    CAS  PubMed  Google Scholar 

  • Mennigen JA, Panserat S, Larquier M, Plagnes-Juan E, Medale F, Seiliez I, Skiba-Cassy S (2012) Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout. PLoS One 7:e38604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mennigen JA, Plagnes-Juan E, Figueredo-Silva CA, Seiliez I, Panserat S, Skiba-Cassy S (2014) Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 169:16–24

    CAS  PubMed  Google Scholar 

  • Mersmann HJ (1998) Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. J Anim Sci 76:1396–1404

    CAS  PubMed  Google Scholar 

  • Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51

    CAS  PubMed  Google Scholar 

  • Mokhtar DM (2018) Cellular and stromal elements organization in the liver of grass carp, Ctenopharyngodon idella (Cypriniformes: Cyprinidae). Micron 112:1–14

    CAS  PubMed  Google Scholar 

  • Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C (2011) The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu Rev Nutr 31:49–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moravcova A, Cervinkova Z, Kucera O, Mezera V, Rychtrmoc D, Lotkova H (2015) The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res 64(Suppl 5):S627–S636

    CAS  PubMed  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569

    CAS  PubMed  Google Scholar 

  • Nazima B, Manoharan V, Miltonprabu S (2015) Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements. Biochem Cell Biol 93:210–226

    CAS  PubMed  Google Scholar 

  • Okamoto Y, Tanaka S, Haga Y (2002) Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol Res 23(2):138–144

    CAS  PubMed  Google Scholar 

  • Park YC, Rimbach G, Saliou C, Valacchi G, Packer L (2000) Activity of monomeric, dimeric, and trimeric flavonoids on NO production, TNF-alpha secretion, and NF-kappaB-dependent gene expression in RAW 264.7 macrophages. FEBS Lett 465:93–97

    CAS  PubMed  Google Scholar 

  • Rao Y, Su J (2015) Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015:670437

    PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V (2019) Grape seeds proanthocyanidins: an overview of in vivo bioactivity in animal models. Nutrients 11(10):2435

    PubMed Central  Google Scholar 

  • Sharma SD, Meeran SM, Katiyar SK (2007) Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 6:995–1005

    CAS  PubMed  Google Scholar 

  • Snyder DT, Robison A, Kemoli S, Kimmel E, Holderness J, Jutila MA, Hedges JF (2014) Oral delivery of oligomeric procyanidins in Apple Poly® enhances type I IFN responses in vivo. J Leukoc Biol 95:841–847

    PubMed  PubMed Central  Google Scholar 

  • Su D, Zhang R, Hou F, Chi J, Huang F, Yan S, Liu L, Deng Y, Wei Z, Zhang M (2017) Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet. Food Funct 8:808–815

    CAS  PubMed  Google Scholar 

  • Sun J, Ji H, Li XX, Shi XC, Du ZY, Chen LQ (2016) Lipolytic enzymes involving lipolysis in teleost: synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B: Biochem Mol Biol 198:110–118

    CAS  Google Scholar 

  • Sung NY, Yang MS, Song DS, Byun EB, Kim JK, Park JH, Song BS, Lee JW, Park SH, Park HJ, Byun MW, Byun EH, Kim JH (2013) The procyanidin trimer C1 induces macrophage activation via NF-kappaB and MAPK pathways, leading to Th1 polarization in murine splenocytes. Eur J Pharmacol 714:218–228

    CAS  PubMed  Google Scholar 

  • Ulusoy S, Ozkan G, Mungan S, Orem A, Yulug E, Alkanat M, Yucesan FB (2014) GSPE is superior to NAC in the prevention of contrast-induced nephropathy: might this superiority be related to caspase 1 and calpain 1? Life Sci 103:101–110

    CAS  PubMed  Google Scholar 

  • Wang JL, Lu RH, Sun JJ, Xie DZ, Yang F, Nie GX (2017) Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets. Aquac Res 48(8):4070–4085

    CAS  Google Scholar 

  • Wei YY, Yan D, Wang Z, Aisa HA (2016) Effect and mechanism of gallic acid on oleic acid-induced steatosis in the chang liver cell NAFLD model. Int J Clin Exp Med 9(7):12669–12677

    CAS  Google Scholar 

  • Wu TH, Pan CY, Lin MC, Hsieh JC, Hui CF, Chen JY (2012) In vivo screening of zebrafish microRNA responses to bacterial infection and their possible roles in regulating immune response genes after lipopolysaccharide stimulation. Fish Physiol Biochem 38:1299–1310

    CAS  PubMed  Google Scholar 

  • Xie Q, Wei M, Zhang B, Kang X, Liu D, Zheng W, Pan X, Quan Y, Liao D, Shen J (2018) MicroRNA33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol Med Rep 17:3318–3327

    CAS  PubMed  Google Scholar 

  • Zhang Q, You C, Wang S, Dong Y, Monroig O, Tocher DR, Li Y (2016) The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus. Sci Rep 6:32909

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the NSFC-United Fund Key Support Project of Henan (U1704109), the National Natural Science Foundation of China (31402311, 31672671, and 31872581), the Science and Technology Breakthrough Major Project in Henan Province (182102410031), and the Natural Science Foundation of Henan Province (162300410165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Xing Nie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RH., Qin, CB., Yang, F. et al. Grape seed proanthocyanidin extract ameliorates hepatic lipid accumulation and inflammation in grass carp (Ctenopharyngodon idella). Fish Physiol Biochem 46, 1665–1677 (2020). https://doi.org/10.1007/s10695-020-00819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00819-3

Keywords

Navigation