Skip to main content
Log in

Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to β cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to β cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to β-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of β cells in zebrafish larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALX:

alloxan

dpa:

days post-amputation

dpf:

days post-fertilization

gcg:

glucagon

GCK:

glucokinase

glut2:

glucose transporter 2

hpf:

hours post-fertilization

PEPCK:

phosphoenolpyruvate carboxykinase

STZ:

streptozotocin

References

  • Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226(2):190–201

    Article  PubMed  Google Scholar 

  • Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W (2001) Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230(2):189–203

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li C, Yuan G, Xie F (2007) Anatomical and histological observation on the pancreas in adult zebrafish. Pancreas. 34(1):120–125

    Article  PubMed  Google Scholar 

  • Christou-Savina S, Beales PL, Osborn DP (2015 Feb 20) Evaluation of zebrafish kidney function using a fluorescent clearance assay. J Vis Exp 96:e52540

    Google Scholar 

  • Curado S, Anderson RM, Jungblut B (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Eleazu CO, Eleazu KC, Chukwuma S, Essien UN (2013) Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord 12(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elo B, Villano CM, Govorko D, White LA (2007) Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Gimeno E, Quera V, Beltran FS, Dolado R (2016) Differences in shoaling behavior in two species of freshwater fish (Danio rerio and Hyphessobrycon herbertaxelrodi). J Comp Psychol 130(4):358–368

    Article  PubMed  Google Scholar 

  • Gnügge L, Meyer D, Driever W (2004) Pancreas development in zebrafish. Methods Cell Biol 76:531–551

    Article  PubMed  Google Scholar 

  • Hrynyk M, Neufeld RJ (2014) Insulin and wound healing. Burns. 40(8):1433–1446

    Article  PubMed  Google Scholar 

  • Intine RV, Olsen AS, Sarras MP Jr (2013) A zebrafish model of diabetes mellitus and metabolic memory. J Vis Exp 72:e50232

    Google Scholar 

  • Ishizaka M, Gohda T, Takagi M, Omote K, Sonoda Y, Oliva Trejo JA, Asao R, Hidaka T, Asanuma K, Horikoshi S, Tomino Y (2015) Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice. Biochem Biophys Res Commun 467(3):549–555

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Schleiffarth JR, Jessurun J, Sumanas S, Petryk A, Lin S, Ekker SC (2005) Wnt5 signaling in vertebrate pancreas development. BMC Biol 3:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Lee GS, Jung EM, Hyun SH, Hwang WS, Jeung EB (2012) Generation of fibroblasts overexpressing liver-specific PEPCK in a miniature pig model of human type 2 diabetes mellitus. Mol Med Rep 6:45–50

    PubMed  Google Scholar 

  • Kinkel MD, Prince VE (2009) On the diabetic menu: zebrafish as a model for pancreas development and function. Bioessays. 31(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkel MD, Eames SC, Alonzo MR, Prince VE (2008) Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number. Development. 135(5):919–929

    Article  CAS  PubMed  Google Scholar 

  • Lai AK, Lo AC (2013) Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013:106594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 51(2):216–226

    Article  CAS  PubMed  Google Scholar 

  • Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42(7):1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Mokrani A, Chisomo-Kasiya H, Wilson-Arop OM, Mi H, Ji K, Ge X, Ren M (2018) Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala). Fish Physiol Biochem 44(3):869–883

    Article  CAS  PubMed  Google Scholar 

  • Marín-Juez R, Rovira M, Crespo D, van der Vaart M, Spaink HP, Planas JV (2015) GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish. J Cereb Blood Flow Metab 35(1):74–85

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Mullapudi ST, Zhang Y, Hesselson D, Stainier DYR (2017) Thyroid hormone coordinates pancreatic islet maturation during the zebrafish larval-to-juvenile transition to maintain glucose homeostasis. Diabetes. 66(10):2623–2635

    Article  CAS  PubMed  Google Scholar 

  • Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG (2009) Regeneration of the pancreas in adult zebrafish. Diabetes 58(8):1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita N, Higami Y, Fukai F, Kobayashi M, Mitarai M, Sekiya T, Sasaki T (2017) Modified Western blotting for insulin and other diabetes-associated peptide hormones. Sci Rep 7(1):6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen AS, Sarras MP Jr, Intine RV (2010) Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen 18(5):532–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Otsuka T, Takeda H (2017) Targeted ablation of pancreatic β cells in medaka. Zool Sci 34(3):179–184

    Article  CAS  PubMed  Google Scholar 

  • Parsons MJ, Pollard SM, Saúde L, Feldman B, Coutinho P, Hirst EM, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development. 129(13):3137–3146

    PubMed  CAS  Google Scholar 

  • Pfefferli C, Jaźwińska A (2015) The art of fin regeneration in zebrafish. Regeneration (Oxf) 2(2):72–83

    Article  Google Scholar 

  • Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ (2007) Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124:218–229

    Article  CAS  PubMed  Google Scholar 

  • Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226(2):202–210

    Article  PubMed  Google Scholar 

  • Salazar JJ, Ennis WJ, Koh TJ (2016) Diabetes medications: impact on inflammation and wound healing. J Diabetes Complicat 30(4):746–752

    Article  PubMed  Google Scholar 

  • Seo KH, Nam YH, Lee DY, Ahn EM, Kang TH, Baek NI (2015) Recovery effect of phenylpropanoid glycosides from Magnolia obovata fruit on alloxan-induced pancreatic islet damage in zebrafish (Danio rerio). Carbohydr Res 416:70–74

    Article  CAS  PubMed  Google Scholar 

  • Shanley LJ, McCaig CD, Forrester JV, Zhao M (2004) Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium. Invest Ophthalmol Vis Sci 45(4):1088–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Thummel R, Bai S, Sarras MP Jr (2006) Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 235(2):336–346

    Article  CAS  PubMed  Google Scholar 

  • Velander P, Theopold C, Hirsch T, Bleiziffer O, Zuhaili B, Fossum M, Hoeller D, Gheerardyn R, Chen M, Visovatti S, Svensson H, Yao F, Eriksson E (2008) Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen 16(2):288–293

    Article  PubMed  Google Scholar 

  • Warga RM, Nüsslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development. 126(4):827–838

    PubMed  CAS  Google Scholar 

  • White FR (1963) Streptozotocin. Cancer Chemother Rep 30:49–53

    PubMed  CAS  Google Scholar 

  • Zhao F, Wang H, Wei P, Jiang G, Wang W, Zhang X, Ru S (2018) Impairment of bisphenol F on the glucose metabolism of zebrafish larvae. Ecotoxicol Environ Saf 165:386–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ya-qi Li from Guangdong Pharmaceutical University for the aid in the experiment.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81703624) and the National Key Research and Development Program of China (No. 2018YFC1707300) and in part by a grant from the Natural Science Foundation of Shandong Province (No. ZR2018PC013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

All protocols were in compliance with the standard ethical guidelines and under control of the Biology Institute, Qilu University of Technology Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, Xl., Liu, Kc. et al. Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae. Fish Physiol Biochem 46, 1025–1038 (2020). https://doi.org/10.1007/s10695-020-00769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00769-w

Keywords

Navigation