Skip to main content

Advertisement

Log in

Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Diseases are natural components of the environment, and many have economic implications for aquaculture and fisheries. Aquaculture is a fast-growing industry with the aim to meet the high protein demand of the ever-increasing global population; however, the emergence of diseases is a major setback to the industry. Probiotics emerged as a better solution to curb the disease problem in aquaculture among many alternatives. Probiotic Bacillus has been proven to better combat a wide range of fish pathogens relative to other probiotics in aquaculture; therefore, understanding the various mechanisms used by Bacillus in combating diseases will help improve their mode of action hence yielding better results in their combat against pathogens in the aquaculture industry. Thus, an overview of the mechanisms (production of bacteriocins, suppression of virulence gene expression, competition for adhesion sites, production of lytic enzymes, production of antibiotics, immunostimulation, competition for nutrients and energy, and production of organic acids) used by Bacillus probiotics in mitigating fish pathogens ranging from Aeromonas, Vibrio, Streptococcus, Yersinia, Pseudomonas, Clostridium, Acinetobacter, Edwardsiella, Flavobacterium, white spot syndrome virus, and infectious hypodermal and hematopoietic necrosis virus proven to be mitigated by Bacillus have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abarike ED, Cai J, Lu Y et al (2018a) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 82:229–238. https://doi.org/10.1016/j.fsi.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  • Abarike ED, Jian J, Tang J et al (2018b) Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac Res 49:2366–2375. https://doi.org/10.1111/are.13691

    Article  CAS  Google Scholar 

  • Abbass A, Sharifuzzaman SM, Austin B (2010) Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33:31–37

    CAS  PubMed  Google Scholar 

  • Abdelsalam M, Asheg A, Eissa AE (2013) Streptococcus dysgalactiae: an emerging pathogen of fishes and mammals. Int J Vet Sci Med 1:1–6

    Google Scholar 

  • Abdollahi-Arpanahi D, Soltani E, Jafaryan H et al (2018) Efficacy of two commercial and indigenous probiotics, Bacillus subtilis and Bacillus licheniformis on growth performance, immuno-physiology and resistance response of juvenile white shrimp (Litopenaeus vannamei). Aquaculture 496:43–49. https://doi.org/10.1016/j.aquaculture.2018.06.082

    Article  CAS  Google Scholar 

  • Abriouel H, Franz CMAP, Ben ON, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

    Article  CAS  PubMed  Google Scholar 

  • Acosta F, Ramos-Vivas J, Lazaro-Diez M et al (2016) Effect of dietary supplementation with Bacillus amyloliquefaciens in the innate immunity in the European sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 53:70

    Google Scholar 

  • Addo S, Carrias AA, Williams MA et al (2017a) Effects of Bacillus subtilis strains and the prebiotic Previda® on growth, immune parameters and susceptibility to Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus. Aquac Res 48:4798–4810

    CAS  Google Scholar 

  • Addo S, Carrias AA, Williams MA et al (2017b) Effects of Bacillus subtilis strains on growth, immune parameters, and Streptococcus iniae susceptibility in Nile tilapia, Oreochromis niloticus. J World Aquacult Soc 48:257–267

    CAS  Google Scholar 

  • Ahmad T, Sanyal KB, Mukherjee D et al (2017) Detection of white spot virus (WSV) in Litopenaeus vannamei from shrimp aquaculture farms in East Midnapore district, West Bengal (India). Int J Fish Aquat Stud 5:205–210

    Google Scholar 

  • Al-Ajlani MM, Hasnain S (2010) Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conf Proc J 1:230–238. https://doi.org/10.2174/2210289201001010230

    Article  CAS  Google Scholar 

  • Al-Thubiani ASA, Maher YA, Fathi A et al (2018) Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharm J 26:1089–1097. https://doi.org/10.1016/j.jsps.2018.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  • Altinok I, Kayis S, Capkin E (2006) Pseudomonas putida infection in rainbow trout. Aquaculture 261:850–855. https://doi.org/10.1016/j.aquaculture.2006.09.009

    Article  Google Scholar 

  • Aly SM, Mohamed MF, John G (2008) Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac Res 39:647–656. https://doi.org/10.1111/j.1365-2109.2008.01932.x

    Article  CAS  Google Scholar 

  • Amin M, Rakhisi Z, Ahmady AZ (2015) Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna J Clin Microb Infec 2:10–13. https://doi.org/10.17795/ajcmi-23233

    Article  CAS  Google Scholar 

  • Ammor S, Tauveron G, Dufour E, Chevallier I (2006) Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1—screening and characterization of the antibacterial compounds. Food Control 17:454–461

    CAS  Google Scholar 

  • An J, Zhu W, Liu Y et al (2015) Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 51:278–282. https://doi.org/10.1016/j.foodcont.2014.11.038

    Article  CAS  Google Scholar 

  • Ariole CN, Oha EC (2013) Antimicrobial activity of estuarine isolates against shrimp pathogenic Aeromonas species. Nat Sci 11:123–128

    Google Scholar 

  • Balcázar JL, de Blas I, Ruiz-Zarzuela I et al (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186. https://doi.org/10.1016/j.vetmic.2006.01.009

    Article  PubMed  Google Scholar 

  • Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  • Banerjee G, Nandi A, Ray AK (2017) Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch Microbiol 199:115–124

    CAS  PubMed  Google Scholar 

  • Bastos Gomes G, Jerry DR, Miller TL, Hutson KS (2017) Current status of parasitic ciliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater fish aquaculture. J Fish Dis 40(5):703–15. https://doi.org/10.1111/jfd.12523

  • Béahdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. In: Advances in applied microbiology. Elsevier, Amsterdam, pp 309–406

    Google Scholar 

  • Behera BK, Paria P, Das A et al (2017) Molecular characterization and pathogenicity of a virulent Acinetobacter baumannii associated with mortality of farmed Indian Major Carp Labeo rohita (Hamilton 1822). Aquaculture 471:157–162. https://doi.org/10.1016/j.aquaculture.2017.01.018

    Article  CAS  Google Scholar 

  • Bhaskar N, Sudeepa ES, Rashmi HN, Selvi AT (2007) Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol 98:2758–2764. https://doi.org/10.1016/j.biortech.2006.09.033

    Article  CAS  PubMed  Google Scholar 

  • Bierbaum G, Sahl H-G (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18. https://doi.org/10.2174/138920109787048616

    Article  CAS  PubMed  Google Scholar 

  • Biziulevièius GA, Þukaitë V (2002) Comparative antimicrobial activity of lysosubtilin and its acid-resistant derivative, Fermosorb. Int J Antimicrob Agents 20:65–68. https://doi.org/10.1016/S0924-8579(02)00117-6

    Article  PubMed  Google Scholar 

  • Boyen F, Eeckhaut V, Van Immerseel F et al (2009) Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 135:187–195. https://doi.org/10.1016/j.vetmic.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Killmann H (1999) Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104–109

    CAS  PubMed  Google Scholar 

  • Breuil G (1991) Vibriosis in sea bass. ICES Identif Leafl Dis Parasites Fish Shellfish d’identification des Mal parasites des Poisson Crustac mollusques 1–4

  • Brunt J, Austin B (2005) Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 28:693–701

    CAS  PubMed  Google Scholar 

  • Buján N, Mohammed H, Balboa S et al (2018a) Genetic studies to re-affiliate Edwardsiella tarda fish isolates to Edwardsiella piscicida and Edwardsiella anguillarum species. Syst Appl Microbiol 41:30–37. https://doi.org/10.1016/j.syapm.2017.09.004

    Article  PubMed  Google Scholar 

  • Buján N, Toranzo AE, Magariños B (2018b) Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. Dis Aquat Org 131:59–71

    Google Scholar 

  • Buruiană CT, Profir AG, Vizireanu C (2014) Effects of probiotic bacillus species in aquaculture—an overview. Ann Univ Dunarea Jos Galati, Fascicle VI Food Technol 38:9–17

    Google Scholar 

  • Cai Y, Yuan W, Wang S et al (2019) In vitro screening of putative probiotics and their dual beneficial effects: to white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquaculture 498:61–71. https://doi.org/10.1016/j.aquaculture.2018.08.024

    Article  Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, He S, Zhou Z et al (2012) Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 78:1899–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Liu Y, Mao W et al (2014) Effect of dietary N-acyl homoserin lactonase on the immune response and the gut microbiota of zebrafish, Danio rerio, infected with Aeromonas hydrophila. J World Aquacult Soc 45:149–162

    CAS  Google Scholar 

  • Cao H, Ye W, He S et al (2016) Acinetobacter lwoffii: an emerging pathogen for red head disease in farmed channel catfish Ictalurus punctatus. Isr J Aquac 68:8

    Google Scholar 

  • Cao H, Yu L, Ou R et al (2017) Acinetobacter johnsonii: an emerging pathogen for cultured blunt snout bream Megalobrama amblycephala. Isr J Aquacult Bamidgeh 69:7

    Google Scholar 

  • Carbone D, Faggio C (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol 54:172–178. https://doi.org/10.1016/j.fsi.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  • Castro N, Toranzo AE, Devesa S et al (2012) First description of Edwardsiella tarda in Senegalese sole, Solea senegalensis (Kaup). J Fish Dis 35:79–82

    CAS  PubMed  Google Scholar 

  • Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents:46, 494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011

  • Chai P-C, Song X-L, Chen G-F et al (2016) Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish Shellfish Immunol 54:602–611. https://doi.org/10.1016/j.fsi.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Zhou Z, Cao Y et al (2010) High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb Cell Factories 9:39. https://doi.org/10.1186/1475-2859-9-39

    Article  CAS  Google Scholar 

  • Chen B-K, Dong Z, Liu D-P et al (2017) Infectious hypodermal and haematopoietic necrosis virus (IHHNV) infection in freshwater crayfish Procambarus clarkii. Aquaculture:477, 76–479. https://doi.org/10.1016/j.aquaculture.2017.05.002

  • Cheng A-C, Lin H-L, Shiu Y-L et al (2017) Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol 67:270–279. https://doi.org/10.1016/j.fsi.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  • Chettri JK, Al-Jubury A, Dalsgaard I et al (2018) Experimental anal infection of rainbow trout with Flavobacterium psychrophilum: a novel challenge model. J Fish Dis 41:1917–1919

    PubMed  Google Scholar 

  • Choe Y, Park J, Yu JE et al (2017) Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. Fish Shellfish Immunol 68:243–250. https://doi.org/10.1016/j.fsi.2017.06.060

    Article  CAS  PubMed  Google Scholar 

  • Choudhury TG, Kamilya D (2018) Paraprobiotics: an aquaculture perspective. Rev Aquac:1–13. https://doi.org/10.1111/raq.12290

  • Christiaen SEA, Brackman G, Nelis HJ, Coenye T (2011) Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87:213–219. https://doi.org/10.1016/j.mimet.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep 4:pp5446. https://doi.org/10.1038/srep05446

  • Colenutt C, Cutting SM (2014) Use of Bacillus subtilis PXN21 spores for suppression of Clostridium difficile infection symptoms in a murine model. FEMS Microbiol Lett 358:154–161

    CAS  PubMed  Google Scholar 

  • Compaoré CS, Nielsen DS, Ouoba LII et al (2013) Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int J Food Microbiol 162:297–307. https://doi.org/10.1016/j.ijfoodmicro.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  • Cruz PM, Ibanez AL, Monroy Hermosillo OA, Ramırez Saad HC (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:916845

    Google Scholar 

  • Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest 112:1626–1632. https://doi.org/10.1172/JCI20430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadar M, Adel M, Zorriehzahra MJ (2016) Isolation and phylogenic analysis of emerging new antibiotic resistant bacteria, Acinetobacter lwoffii, associated with mortality in farmed rainbow trout. Iran J Fish Sci 15:1279–1292

    Google Scholar 

  • Dallaire-Dufresne S, Tanaka KH, Trudel MV et al (2014) Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol 169:1–7

    CAS  PubMed  Google Scholar 

  • Das A, Nakhro K, Chowdhury S, Kamilya D (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol:35, 1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022

  • Dash SS, Das BK, Pattnaik P et al (2009) Biochemical and serological characterization of Flavobacterium columnare from freshwater fishes of Eastern India. J World Aquacult Soc 40:236–247

    Google Scholar 

  • Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240:69–88. https://doi.org/10.1016/j.aquaculture.2004.06.031

    Article  Google Scholar 

  • Dewangan NK, Ayyaru G, Kuzhanthaivel R et al (2017) Incidence of simultaneous infection of infectious hypodermal and haematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) in Litopenaeus vannamei. Aquaculture 471:1–7. https://doi.org/10.1016/j.aquaculture.2017.01.002

    Article  Google Scholar 

  • Doroteo AM, Pedroso FL, Lopez JDM, Apines-Amar MJS (2018) Evaluation of potential probiotics isolated from saline tilapia in shrimp aquaculture. Aquac Int 26(4):1095–107. https://doi.org/10.1007/s10499-018-0270-2

  • Duarte J, Pereira C, Moreirinha C et al (2018) New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: an in vitro preliminary study. Aquaculture 495:970–982. https://doi.org/10.1016/j.aquaculture.2018.07.002

    Article  Google Scholar 

  • Duchaud E, Rochat T, Habib C et al (2018) Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum. Front Microbiol 9:138

    PubMed  PubMed Central  Google Scholar 

  • Eissa A, Zaki M, Baiomy A (2010) Flavobacterium columnare/Myxobolus tilapiae concurrent infection in the earthen pond reared Nile tilapia (Oreochromis niloticus) during the early summer. Interdiscip Bio Cent 2:1–10

    Google Scholar 

  • Eissa N, Wang HP, Yao H, Abou-ElGheit E (2018) Mixed Bacillus species enhance the innate immune response and stress tolerance in yellow perch subjected to hypoxia and air-exposure stress. Sci Rep 8. https://doi.org/10.1038/s41598-018-25269-z

  • Esteban MA, Cordero H, Martínez-Tomé M et al (2014) Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 39:532–540. https://doi.org/10.1016/j.fsi.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  • Etyemez M, Balcazar JL (2016) Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Res Vet Sci 105:62–64. https://doi.org/10.1016/j.rvsc.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  • Evenhuis JP, LaPatra SE, Graf J (2017) Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10. Genome Announc 5(15):e00173–e00117

    PubMed  PubMed Central  Google Scholar 

  • Fečkaninová A, Koščová J, Mudroňová D et al (2017) The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469:1–8. https://doi.org/10.1016/j.aquaculture.2016.11.042

    Article  Google Scholar 

  • Fitzpatrick LR, Small JS, Greene WH et al (2011) Bacillus coagulans GBI-30 (BC30) improves indices of Clostridium difficile-induced colitis in mice. Gut Pathog 3:16

    PubMed  PubMed Central  Google Scholar 

  • Fu L, Wang C, Ruan X et al (2018) Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. Int J Food Microbiol 266:60–68. https://doi.org/10.1016/j.ijfoodmicro.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Ben ON (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Gao XY, Liu Y, Miao LL et al (2017a) Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Appl Microbiol Biotechnol 101:3759–3768. https://doi.org/10.1007/s00253-017-8095-x

    Article  CAS  PubMed  Google Scholar 

  • Gao XY, Liu Y, Miao LL et al (2017b) Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2, and characterization of the active substance. AMB Express 7:23. https://doi.org/10.1186/s13568-017-0323-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhang M, Li X et al (2018) Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol 76:143–152. https://doi.org/10.1016/j.fsi.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  • Geeraerts S, Delezie E, Ducatelle R et al (2016) Vegetative Bacillus amyloliquefaciens cells do not confer protection against necrotic enteritis in broilers despite high antibacterial activity of its supernatant against Clostridium perfringens in vitro. Br Poult Sci 57:324–329

    CAS  PubMed  Google Scholar 

  • Giri SS, Sen SS, Sukumaran V (2012) Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 32:1135–1140. https://doi.org/10.1016/j.fsi.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  • Giri SS, Chi C, Jun JW, Park SC (2018) Use of bacterial subcellular components as immunostimulants in fish aquaculture. Rev Aquac 10:474–492

    Google Scholar 

  • Gobi N, Malaikozhundan B, Sekar V et al (2016) GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus. Fish Shellfish Immunol 52:230–238. https://doi.org/10.1016/j.fsi.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  • Gobi N, Vaseeharan B, Chen JC et al (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  • Goda AM, Omar EA, Srour TM et al (2018) Effect of diets supplemented with feed additives on growth, feed utilization, survival, body composition and intestinal bacterial load of early weaning European seabass, Dicentrarchus labrax post-larvae. Aquac Int 26:169–183. https://doi.org/10.1007/s10499-017-0200-8

    Article  CAS  Google Scholar 

  • González L, Sandoval H, Sacristán N et al (2007) Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18:716–722

    Google Scholar 

  • Good C, Davidson J, Wiens GD et al (2015) Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems. J Fish Dis 38:409–413. https://doi.org/10.1111/jfd.12249

    Article  CAS  PubMed  Google Scholar 

  • Griffin MJ, Greenway TE, Wise DJ (2017) Edwardsiella spp. Fish viruses Bact Pathobiol Prot CABI, Wallingford, UK 190–210

  • Grubbs KJ, Bleich RM, Santa Maria KC et al (2017) Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2. https://doi.org/10.1128/mSystems.00040-17

  • Guo X, Chen DD, Peng KS et al (2016a) Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol 52:74–84. https://doi.org/10.1016/j.fsi.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Huang E, Yang X et al (2016b) Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control 60:511–518. https://doi.org/10.1016/j.foodcont.2015.08.029

    Article  CAS  Google Scholar 

  • Gupta A, Verma G, Gupta P (2016) Growth performance, feed utilization, digestive enzyme activity, innate immunity and protection against Vibrio harveyi of freshwater prawn, Macrobrachium rosenbergii fed diets supplemented with Bacillus coagulans. Aquac Int 24:1379–1392. https://doi.org/10.1007/s10499-016-9996-x

    Article  CAS  Google Scholar 

  • Hao K, Liu J-Y, Ling F et al (2014) Effects of dietary administration of Shewanella haliotis D4, Bacillus cereus D7 and Aeromonas bivalvium D15, single or combined, on the growth, innate immunity and disease resistance of shrimp, Litopenaeus vannamei. Aquaculture 428–429:141–149. https://doi.org/10.1016/j.aquaculture.2014.03.016

    Article  Google Scholar 

  • Hao K, Wu Z-Q, Li D-L et al (2017) Effects of dietary administration of Shewanella xiamenensis A-1, Aeromonas veronii A-7, and Bacillus subtilis, single or combined, on the grass carp (Ctenopharyngodon idella) intestinal microbiota. Probiotics Antimicrob Proteins 9:386–396

    CAS  PubMed  Google Scholar 

  • Harikrishnan R, Kim MC, Kim JS et al (2011) Probiotics and herbal mixtures enhance the growth, blood constituents, and nonspecific immune response in Paralichthys olivaceus against Streptococcus parauberis. Fish Shellfish Immunol 31:310–317. https://doi.org/10.1016/j.fsi.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  • Harpeni E, Santoso L, Supono S et al (2018) Effects of dietary probiotic Bacillus sp. D2. 2 and prebiotic sweet potato extract on growth performance and resistance to Vibrio harveyi in Pacific white shrimp, Litopenaeus vannamei. Aquac Indones 18:55–61

    Google Scholar 

  • Hassanein SM, Soliman NK (2010) Effect of probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of Hy-line layers hens. J Am Sci 6:159–169

    Google Scholar 

  • Hatje E, Neuman C, Katouli M (2014) Interaction of Aeromonas strains with lactic acid bacteria via Caco-2 cells. Appl Environ Microbiol 80:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawke JP, McWhorter AC, Steigerwalt AG, Brenner DONJ (1981) Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int J Syst Evol Microbiol 31:396–400

    CAS  Google Scholar 

  • He S, Liu W, Zhou Z et al (2011) Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio). J Aquac Res Dev S1. https://doi.org/10.4172/2155-9546.S1-005

  • He S, Zhang Y, Xu L et al (2013) Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus ♀×Oreochromis aureus ♂. Aquaculture 412–413:125–130. https://doi.org/10.1016/j.aquaculture.2013.06.028

    Article  CAS  Google Scholar 

  • Hernández E, Figueroa J, Iregui C (2009) Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis 32:247–252

    PubMed  Google Scholar 

  • Igbinosa EO (2016) Detection and antimicrobial resistance of Vibrio isolates in aquaculture environments: implications for public health. Microb Drug Resist 22:238–245

    CAS  PubMed  Google Scholar 

  • Ige BA (2013) Probiotics use in intensive fish farming. Afr J Microbiol Res 7:2701–2711. https://doi.org/10.5897/AJMRx12.021

    Article  Google Scholar 

  • Iwashita MKP, Nakandakare IB, Terhune JS et al (2015) Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol 43:60–66. https://doi.org/10.1016/j.fsi.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  • Jadhav H, Shaikh S, Sayyed R (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Rhizotrophs: Plant Growth Promotion to Bioremediation, pp 183–203

    Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman S, Thangavel G, Kurian H et al (2013) Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult Sci 92:370–374

    CAS  PubMed  Google Scholar 

  • Jayasree L, Janakiram P, Madhavi R (2006) Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquacult Soc 37:523–532

    Google Scholar 

  • Jeena K, Krishnan R, Shyam KU et al (2018) Dynamics of Infection in Selected Tissues of White Spot Syndrome Virus-Infected Litopenaeus vannamei. Int J Curr Microbiol App Sci 7:3003–3008

    Google Scholar 

  • Kapperud G, Jonsson B (1976) Yersinia enterocolitica in brown trout (Salmo trutta L.) from Norway. Acta Pathol Microbiol Scand Sect B Microbiol 84:66–68

    CAS  Google Scholar 

  • Kavitha M, Raja M, Perumal P (2018) Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquac Reports 11:59–69. https://doi.org/10.1016/j.aqrep.2018.07.001

    Article  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  • Keysami MA, Mohammadpour M (2013) Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn, Macrobrachium rosenbergii (de Man). Aquac Int 21:553–562

    Google Scholar 

  • Kholil MI, Hossain MMM, Neowajh MS et al (2015) Comparative efficiency of some commercial antibiotics against Pseudomonas infection in fish. Int J Fish Aquat Stud 2:114–117

    Google Scholar 

  • Kim S-Y, Ohk S-H, Bai D, J-H YU (1999) Purification and Properties of Bacteriolytic Enzymes from Bacillus licheniformis YS1005 against Streptococcus mutans. Biosci Biotechnol Biochem 63:73–77. https://doi.org/10.1271/bbb.63.73

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-R, Kim E-Y, Lee JM et al (2013) Characterisation of a novel Bacillus sp. SJ-10 β-1, 3–1, 4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess Biosyst Eng 36:721–727

    CAS  PubMed  Google Scholar 

  • Kim D-H, Subramanian D, Heo M-S (2017) Dietary effect of probiotic bacteria, Bacillus amyloliquefaciens-JFP2 on growth and innate immune response in rock bream Oplegnathus fasciatus, challenged with Streptococcus iniae. Isr J Aquac - Bamidgeh 69:

  • Korkea-Aho TL, Heikkinen J, Thompson KD et al (2011) Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 111:266–277

    CAS  PubMed  Google Scholar 

  • Kozińska A, Paździor E, Pękala A, Niemczuk W (2014) Acinetobacter johnsonii and Acinetobacter lwoffii-the emerging fish pathogens. Bull Vet Inst Pulawy 58:193–199

    Google Scholar 

  • Kuebutornye FKA, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Menanteau-Ledouble S, Saleh M, El-Matbouli M (2015) Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet Res 46:103

    PubMed  PubMed Central  Google Scholar 

  • Kumari M (2013) Survey, surveillance and management of bacterial disease from the culture ponds of tarai region, Uttarakhand

  • Laanto E, Ravantti JJ, Sundberg L-R (2017) Complete genome sequence of an aquaculture-associated phage, FL-1, infecting Flavobacterium spp. Genome Anouncements 5:

  • Lafferty KD, Harvell CD, Conrad JM et al (2015) Infectious diseases affect marine fisheries and aquaculture economics. Annu Rev Mar Sci 7:471–496. https://doi.org/10.1146/annurev-marine-010814-015646

    Article  Google Scholar 

  • LaFrentz BR, LaPatra SE, Shoemaker CA, Klesius PH (2012) Reproducible challenge model to investigate the virulence of Flavobacterium columnare genomovars in rainbow trout Oncorhynchus mykiss. Dis Aquat Org 101:115–122

    CAS  Google Scholar 

  • Lalloo R, Moonsamy G, Ramchuran S et al (2010) Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett Appl Microbiol 50:563–570

    CAS  PubMed  Google Scholar 

  • Lara-Flores M, Aguirre-Guzman G (2009) The use of probiotic in fish and shrimp aquaculture. A review. Probiotics Prod Eval uses Anim Feed Res Signpost, Kerala 75–89

  • Lee M, Kim E (2014) Inhibitory effects of candidate probiotic bacteria on the growth of fish pathogenic bacteria, Streptococcus sp. J Fish Pathol 27:107–114

    Google Scholar 

  • Lee S, Lee J, Jin YI et al (2017) Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT Food Sci Technol 79:518–524. https://doi.org/10.1016/j.lwt.2016.08.040

    Article  CAS  Google Scholar 

  • Lee S, Katya K, Hamidoghli A et al (2018) Synergistic effects of dietary supplementation of Bacillus subtilis WB60 and mannanoligosaccharide (MOS) on growth performance, immunity and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol 83:283–291. https://doi.org/10.1016/j.fsi.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  • Leigh WJ, Zadoks RN, Jaglarz A et al (2018) Evaluation of PCR primers targeting the gro EL gene for the specific detection of Streptococcus agalactiae in the context of aquaculture. J Appl Microbiol1 25(3):666–674. https://doi.org/10.1111/jam.13925

  • Letchumanan V, Yin W-F, Lee L-H, Chan K-G (2015) Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 6:33

    PubMed  PubMed Central  Google Scholar 

  • Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291:35–40. https://doi.org/10.1016/j.aquaculture.2009.03.005

    Article  CAS  Google Scholar 

  • Lin Y-S, Saputra F, Chen Y-C, Hu S-Y (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol 86:410–419. https://doi.org/10.1016/j.fsi.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Lett 87:149–164

    CAS  Google Scholar 

  • Liu CH, Chiu CS, Ho PL, Wang SW (2009) Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol 107:1031–1041. https://doi.org/10.1111/j.1365-2672.2009.04284.x

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Wu K, Chu T-W, Wu T-M (2018) Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against Vibrio alginolyticus in parrot fish (Oplegnathus fasciatus). Aquac Int 26:63–74

    CAS  Google Scholar 

  • López JR, Lorenzo L, Marcelino-Pozuelo C et al (2017) Pseudomonas baetica: pathogenicity for marine fish and development of protocols for rapid diagnosis. FEMS Microbiol Lett 364(3). https://doi.org/10.1093/femsle/fnw286

  • Luis-Villaseñor IE, Macías-Rodríguez ME, Gómez-Gil B et al (2011) Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture 321:136–144. https://doi.org/10.1016/j.aquaculture.2011.08.036

    Article  Google Scholar 

  • Maeda M, Shibata A, Biswas G et al (2014) Isolation of lactic acid bacteria from kuruma shrimp (Marsupenaeus japonicus) intestine and assessment of immunomodulatory role of a selected strain as probiotic. Mar Biotechnol 16:181–192

    CAS  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. https://doi.org/10.1016/j.fsi.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • McKeen CD, Reilly CC, Pusey PL (1985) Production and partial characterization of antifungal substances antagonistics to Monilinia fructicola from Bacillus subtilis. Phytopathology 76:136–139. https://doi.org/10.1016/j.soilbio.2014.03.012

    Article  CAS  Google Scholar 

  • Meidong R, Doolgindachbaporn S, Jamjan W et al (2017) A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-dong) for potential use as a feed supplement in aquaculture. J Gen Appl Microbiol 63:246–253. https://doi.org/10.2323/jgam.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  • Meidong R, Khotchanalekha K, Doolgindachbaporn S et al (2018) Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol 73:1–10. https://doi.org/10.1016/j.fsi.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  • Mellbye B, Schuster M (2011) The sociomicrobiology of antivirulence drug resistance: a proof of concept. MBio 2:e00131–e00111. https://doi.org/10.1128/mBio.00131-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A et al (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  • Merritt J, Qi F, Goodman SD, et al (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans; Infect Immun 71:1972 LP – 1979. doi: https://doi.org/10.1128/IAI.71.4.1972-1979.2003

  • Midhun SJ, Neethu S, Vysakh A et al (2018) Antagonism against fish pathogens by cellular components/preparations of Bacillus coagulans (MTCC-9872) and its in vitro probiotic characterisation. Curr Microbiol 75(9):1174–81. https://doi.org/10.1007/s00284-018-1506-0

  • Midhun SJ, Neethu S, Arun D et al (2019) Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture 505:289–296

    CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Nam G-H, Gim J-A et al (2018) Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol Cell 41:495

    CAS  Google Scholar 

  • Mitra A, Mukhopadhyay PK, Homechaudhuri S (2018) Probiotic effect of Bacillus licheniformis fb11 on the digestive efficiency and growth performance in juvenile Chitala chitala (Hamilton, 1822). In: Proceedings of the Zoological Society. Springer, Berlin, pp 403–414

    Google Scholar 

  • Mohamed MH, Refat N (2011) Pathological evaluation of probiotic, Bacillus subtilis, against Flavobacterium columnare in tilapia nilotica (Oreochromis niloticus) fish in Sharkia Governorate, Egypt. J Am Sci 7:244–256

    Google Scholar 

  • Mohanty BR, Sahoo PK (2007) Edwardsiellosis in fish: a brief review. J Biosci 32:1331–1344

    CAS  PubMed  Google Scholar 

  • Mohapatra S, Chakraborty T, Kumar V et al (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 97:405–430

    CAS  Google Scholar 

  • Munir MB, Hashim R, Chai YH et al (2016) Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture 460:59–68

    CAS  Google Scholar 

  • Musikasang H, Tani A, H-kittikun A, Maneerat S (2009) Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J Microbiol Biotechnol 25:1337–1345

    CAS  Google Scholar 

  • Musthafa KS, Saroja V, Pandian SK, Ravi AV (2011) Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine- lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 36:55–67. https://doi.org/10.1007/s12038-011-9011-7

    Article  CAS  PubMed  Google Scholar 

  • Nandi A, Banerjee G, Dan SK et al (2017a) Probiotic efficiency of Bacillus sp. in Labeo rohita challenged by Aeromonas hydrophila: assessment of stress profile, haemato-biochemical parameters and immune responses. Aquac Res 48:4334–4345

    CAS  Google Scholar 

  • Nandi A, Banerjee G, Dan SK et al (2017b) Screening of autochthonous intestinal microbiota as candidate probiotics isolated from four freshwater teleosts. Curr Sci 113:767

    CAS  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Nemec A, Musílek M, Šedo O et al (2010) Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol 60:896–903

    CAS  PubMed  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA, Mutani A et al (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–1706

    CAS  PubMed  Google Scholar 

  • Nguyen TL, Lim YJ, Kim D, Austin B (2016) Development of real-time PCR for detection and quantitation of Streptococcus parauberis. J Fish Dis 39:31–39

    CAS  PubMed  Google Scholar 

  • Nho S-W, Shin G-W, Park S-B et al (2009) Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol Lett 293:20–27

    CAS  PubMed  Google Scholar 

  • Nimrat S, Suksawat S, Boonthai T, Vuthiphandchai V (2012) Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet Microbiol 159:443–450. https://doi.org/10.1016/j.vetmic.2012.04.029

    Article  PubMed  Google Scholar 

  • Nita MKH, Kua BC, Bhassu S, Othman RY (2012) Detection and genetic profiling of infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in wild berried freshwater prawn, Macrobrachium rosenbergii collected for hatchery production. Mol Biol Rep 39:3785–3790

    Google Scholar 

  • Noga EJ (1996) Fish diseases. Diagnosis and treatment. Mosby-Year Book. Inc, St. Louis, p 367p

    Google Scholar 

  • Novotny L, Dvorska L, Lorencova A, et al (2004) Fish: a potential source of bacterial pathogens for human beings. A review. Vet Med (Czech Republic)

  • Ohtani M, Villumsen KR, Strøm HK et al (2019) Effects of fish size and route of infection on virulence of a Danish Yersinia ruckeri O1 biotype 2 strain in rainbow trout (Oncorhynchus mykiss). Aquaculture 503:519–526. https://doi.org/10.1016/j.aquaculture.2019.01.041

    Article  Google Scholar 

  • Ormsby M, Davies R (2017) Yersinia ruckeri. Fish Viruses and Bacteria: Pathobiology and Protection. Oxfordshire: CABI Publishing 339–51.

  • Pan X, Wu T, Zhang L et al (2008) In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish. J Appl Microbiol 105:1623–1629

    CAS  PubMed  Google Scholar 

  • Panigrahi A, Azad IS (2007) Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish Physiol Biochem 33:429–440

    CAS  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patra A, Sarker S, Banerjee S et al (2016) Rapid detection of Flavobacterium columnare infection in fish by species-specific polymerase chain reaction. J Aquac Res Dev 7:445

    Google Scholar 

  • Pereira UP, Mian GF, Oliveira ICM et al (2010) Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet Microbiol 140:186–192

    CAS  PubMed  Google Scholar 

  • Pérez-Sánchez T, Ruiz-Zarzuela I, de Blas I, Balcázar JL (2014) Probiotics in aquaculture: a current assessment. Rev Aquac 5:1–14. https://doi.org/10.1111/raq.12033

    Article  Google Scholar 

  • Pham K, Tran HTT, Van Doan C et al (2017) Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP 28 antigen. Lett Appl Microbiol 64:184–191

    CAS  PubMed  Google Scholar 

  • Piewngam P, Zheng Y, Nguyen TH et al (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562:532–537. https://doi.org/10.1038/s41586-018-0616-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinchuk IV, Bressollier P, Verneuil B et al (2001) In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother 45:3156–3161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plant KP, LaPatra SE (2011) Advances in fish vaccine delivery. Dev Comp Immunol 35:1256–1262. https://doi.org/10.1016/j.dci.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Prayitno SB, Sabdono A, Saptiani G (2018) Antagonistic activity of Kelabau fish (Osteochilus melanopleurus) gut bacteria against Aeromonas hydrophila and Pseudomonas sp. Aquac Aquarium, Conserv Legis 11:1859–1868

    Google Scholar 

  • Rahman MM, Ferdowsy H, Kashem MA, Foysal MJ (2010) Tail and fin rot disease of Indian major carp and climbing perch in Bangladesh. J Biol Sci 10:800–804

    Google Scholar 

  • Rai P, Safeena MP, Krabsetsve K et al (2012) Genomics, molecular epidemiology and diagnostics of infectious hypodermal and hematopoietic necrosis virus. Indian J Virol 23:203–214

    PubMed  PubMed Central  Google Scholar 

  • Raida MK, Larsen JL, Nielsen ME, Buchmann K (2003) Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J Fish Dis 26:495–498

    CAS  PubMed  Google Scholar 

  • Ramesh D, Souissi S (2018) Effects of potential probiotic Bacillus subtilis KADR1 and its subcellular components on immune responses and disease resistance in Labeo rohita. Aquac Res 49:367–377. https://doi.org/10.1111/are.13467

    Article  CAS  Google Scholar 

  • Ramesh D, Vinothkanna A, Rai AK, Vignesh VS (2015) Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol 45:268–276. https://doi.org/10.1016/j.fsi.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  • Ramesh D, Souissi S, Ahamed TS (2017) Effects of the potential probiotics Bacillus aerophilus KADR3 in inducing immunity and disease resistance in Labeo rohita. Fish Shellfish Immunol 70:408–415. https://doi.org/10.1016/j.fsi.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  • Ran C, Carrias A, Williams MA et al (2012) Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 7:e45793. https://doi.org/10.1371/journal.pone.0045793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen BB, Erner KE, Bentzon-Tilia M, Gram L (2018) Effect of TDA-producing Phaeobacter inhibens on the fish pathogen Vibrio anguillarum in non-axenic algae and copepod systems. Microb Biotechnol 11:1070–1079. https://doi.org/10.1111/1751-7915.13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MRK, Mastan SA (2013) Emerging Acinetobacter schindleri in red eye infection of Pangasius sutchi. Afr J Biotechnol 12:6992–6996

    Google Scholar 

  • Reichley SR, Ware C, Khoo LH et al (2018) Comparative susceptibility of channel catfish, Ictalurus punctatus; blue catfish, Ictalurus furcatus; and channel (♀) × blue (♂) hybrid catfish to Edwardsiella piscicida, Edwardsiella tarda, and Edwardsiella anguillarum. J World Aquacult Soc 49:197–204. https://doi.org/10.1111/jwas.12467

    Article  Google Scholar 

  • Reimmann C, Ginet N, Michel L et al (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932. https://doi.org/10.1099/00221287-148-4-923

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264

    Google Scholar 

  • Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzym Microb Technol 49:113–123. https://doi.org/10.1016/j.enzmictec.2011.06.001

    Article  CAS  Google Scholar 

  • Sahu MK, Swarnakumar NS, Sivakumar K et al (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48:299–308

    PubMed  PubMed Central  Google Scholar 

  • Sánchez-Ortiz AC, Angulo C, Luna-González A et al (2016) Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish Shellfish Immunol 59:95–102. https://doi.org/10.1016/j.fsi.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  • Santos RA, Oliva-Teles A, Saavedra MJ et al (2018) Bacillus spp. as source of natural antimicrobial compounds to control aquaculture bacterial fish pathogens. Front Mar Sci. https://doi.org/10.3389/conf.FMARS.2018.06.00129

  • Sekar A, Packyam M, Kim K (2016) Growth enhancement of shrimp and reduction of shrimp infection by Vibrio parahaemolyticus and white spot syndrome virus with dietary administration of Bacillus sp. Mk22

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol 44:496–503. https://doi.org/10.1016/j.fsi.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  • Senapin S, Shyam KU, Meemetta W et al (2018) Inapparent infection cases of tilapia lake virus (TiLV) in farmed tilapia. Aquaculture 487:51–55. https://doi.org/10.1016/j.aquaculture.2018.01.007

    Article  Google Scholar 

  • Shaheen AA, Eissa N, Abou-El-Gheit EN et al (2014) Probiotic effect on molecular antioxidant profiles in yellow perch, Perca flavescens. Glob J Fish Aquac Res 1:16–29

    Google Scholar 

  • Shoemaker CA, Olivares-Fuster O, Arias CR, Klesius PH (2008) Flavobacterium columnare genomovar influences mortality in channel catfish (Ictalurus punctatus). Vet Microbiol 127:353–359

    CAS  PubMed  Google Scholar 

  • Shrout JD, Chopp DL, Just CL et al (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277. https://doi.org/10.1111/j.1365-2958.2006.05421.x

    Article  CAS  PubMed  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ et al (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030. https://doi.org/10.1093/ecam/neq025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Wu T, Cai L et al (2006) Effects of dietary supplementation with Clostridium butyricum on the growth performance and humoral immune response in Miichthys miiuy. J Zhejiang Univ Sci B 7:596–602

    PubMed  PubMed Central  Google Scholar 

  • Soto E, Griffin M, Arauz M et al (2012) Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia. J Aquat Anim Health 24:81–90

    PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  • Suebsing R, Kampeera J, Tookdee B et al (2013) Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia. Lett Appl Microbiol 57:317–324

    CAS  PubMed  Google Scholar 

  • Suga H, Smith KM (2003) Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Opin Chem Biol 7:586–591. https://doi.org/10.1016/j.cbpa.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  • Sumon MS, Ahmmed F, Khushi SS et al (2018) Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets. J King Saud Univ - Sci 30:21–28. https://doi.org/10.1016/j.jksus.2016.11.003

    Article  Google Scholar 

  • Suva M, Sureja V, Kheni D (2016) Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. J Curr Res Sci Med 2:65. https://doi.org/10.1177/0731121417719693

    Article  Google Scholar 

  • Tang K, Zhang Y, Yu M et al (2013) Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci Rep 3:2935

    PubMed  PubMed Central  Google Scholar 

  • Tang Y, Han L, Chen X et al (2019) Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila challenge. Probiotics Antimicrob Proteins 11(2):545–58. https://doi.org/10.1007/s12602-018-9409-8

  • Tattiyapong P, Dachavichitlead W, Surachetpong W (2017) Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Vet Microbiol 207:170–177. https://doi.org/10.1016/j.vetmic.2017.06.014

    Article  PubMed  Google Scholar 

  • Teixeira ML, Cladera-Olivera F, dos Santos J, Brandelli A (2009) Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities. Food Res Int 42:63–68. https://doi.org/10.1016/j.foodres.2008.08.010

    Article  CAS  Google Scholar 

  • Thankappan B, Ramesh D, Ramkumar S et al (2015) Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens. Appl Biochem Biotechnol 175:340–353. https://doi.org/10.1007/s12010-014-1270-y

    Article  CAS  PubMed  Google Scholar 

  • Thompson KD (2017) Immunology: improvement of innate and adaptive immunity. In: Fish Diseases. Elsevier, Amsterdam, pp 1–17

    Google Scholar 

  • Thurlow CM, Williams MA, Carrias A et al (2019) Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051

    Article  Google Scholar 

  • Thy HTT, Tri NN, Quy OM et al (2017) Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol 60:391–399. https://doi.org/10.1016/j.fsi.2016.11.016

    Article  CAS  Google Scholar 

  • Tobback E, Decostere A, Hermans K et al (2007) Yersinia ruckeri infections in salmonid fish. J Fish Dis 30:257–268

    CAS  PubMed  Google Scholar 

  • Torabi Delshad S, Soltanian S, Sharifiyazdi H, Bossier P (2018) Effect of quorum quenching bacteria on growth, virulence factors and biofilm formation of Yersinia ruckeri in vitro and an in vivo evaluation of their probiotic effect in rainbow trout. J Fish Dis 41:1429–1438. https://doi.org/10.1111/jfd.12840

    Article  CAS  PubMed  Google Scholar 

  • Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Inmunología 22:277–286

    Google Scholar 

  • Tremblay J, Richardson A-P, Lépine F, Déziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9:2622–2630. https://doi.org/10.1111/j.1462-2920.2007.01396.x

    Article  CAS  PubMed  Google Scholar 

  • Urdaci M, Pinchuk I (2004) Antimicrobial activity of Bacillus probiotics-bacterial spore formers : probiotics and emerging applications. pp 171-182.

  • Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med (Praha) 56:486–503

    CAS  Google Scholar 

  • Van Hai N (2015a) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture 446:88–96

    Google Scholar 

  • Van Hai N (2015b) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45:592–597. https://doi.org/10.1016/j.fsi.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  • Verma DK, Rathore G (2013) Molecular characterization of Flavobacterium columnare isolated from a natural outbreak of columnaris disease in farmed fish, Catla catla from India. J Gen Appl Microbiol 59:417–424

    CAS  PubMed  Google Scholar 

  • Verma DK, Rathore G, Pradhan PK et al (2015) Isolation and characterization of Flavobacterium columnare from freshwater ornamental goldfish Carassius auratus. J Environ Biol 36:433

    CAS  PubMed  Google Scholar 

  • Verschuere L, Heang H, Criwl G, Sorgeloos P (2000a) Verstraete (2000) Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66:1139–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000b) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000.Updated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377 LP – 4391. doi: https://doi.org/10.1128/JB.00486-08

  • Wang C, Liu Y, Sun G et al (2019) Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound. Aquaculture 500:65–74

    CAS  Google Scholar 

  • Wani N, Wani SA, Munshi ZH, et al (2018) Isolation and virulence gene profiling of Clostridium perfringens from freshwater fish. Journal of Entomology and Zoology Studies 6(3):176–181 

  • Wee WC, Mok CH, Romano N et al (2018) Dietary supplementation use of Bacillus cereus as quorum sensing degrader and their effects on growth performance and response of Malaysian giant river prawn Macrobrachium rosenbergii juvenile towards Aeromonas hydrophila. Aquac Nutr 24:1804–1812. https://doi.org/10.1111/anu.12819

    Article  CAS  Google Scholar 

  • Wiklund T (2016) Pseudomonas anguilliseptica infection as a threat to wild and farmed fish in the Baltic Sea. Microbiol Aust 37:135–136

    Google Scholar 

  • Wilson AB (2017) MHC and adaptive immunity in teleost fishes. Immunogenetics 69:521–528

    CAS  PubMed  Google Scholar 

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    CAS  PubMed  Google Scholar 

  • Yan Y, Xia H, Yang H et al (2016) Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE 5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac Nutr 22:698–707

    CAS  Google Scholar 

  • Yi Y, Zhang Z, Zhao F et al (2018) Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol 78:322–330. https://doi.org/10.1016/j.fsi.2018.04.055

    Article  CAS  PubMed  Google Scholar 

  • Zaineldin AI, Hegazi S, Koshio S et al (2018) Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish Shellfish Immunol 79:303–312. https://doi.org/10.1016/j.fsi.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-H, Dong Y-H (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571. https://doi.org/10.1111/j.1365-2958.2004.04234.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Cao Y, Yao B et al (2011) Characteristics of quenching enzyme AiiO-AIO6 and its effect on Aeromonas hydrophila virulence factors expression. J Fish China 35:1720–1728

    CAS  Google Scholar 

  • Zhao Y, Yuan L, Li M et al (2017) Dietary probiotic Bacillus licheniformis TC22 increases growth, immunity, and disease resistance, against Vibrio splendidus infection in juvenile sea cucumbers Apostichopus japonicus. Isr J Aquac 69:8

    Google Scholar 

  • Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36:501–509. https://doi.org/10.1007/s10695-009-9320-z

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Zeng D, Ni X et al (2016a) Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis 15:48

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Zhang A, Yin H, Chu W (2016b) Bacillus sp. QSI-1 modulate quorum sensing signals reduce Aeromonas hydrophila level and alter gut microbial community structure in fish. Front Cell Infect Microbiol 6:184

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Xia Y, Zhu C, Chu W (2018) Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Mar Drugs 16:196

    PubMed Central  Google Scholar 

  • Zokaeifar H, Babaei N, Saad CR et al (2014) Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 36:68–74. https://doi.org/10.1016/j.fsi.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Jiang H, Cheng H et al (2018) Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 117:781–789. https://doi.org/10.1016/j.ijbiomac.2018.05.233

    Article  CAS  PubMed  Google Scholar 

Download references

Submission declaration and verification

This article to be considered for publication has not been published previously and is not under consideration for publication elsewhere.

Funding

The study is supported by Shenzhen strategic emerging and future industrial development funds (20170426231005389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuebutornye, F.K.A., Abarike, E.D., Lu, Y. et al. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiol Biochem 46, 819–841 (2020). https://doi.org/10.1007/s10695-019-00754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00754-y

Keywords

Navigation