Skip to main content
Log in

The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The main purpose of this study was to evaluate the immunity, antioxidant indices, and disease resistance of quercetin in zebrafish (Danio rerio). A total of 630 fish were assigned to 21 tanks with 30 fish/tank, and they were exposed to 0, 0.01, 0.1, 1, 10, 100, and 1000 μg/L quercetin, respectively, for 56 days. Results indicated that the immune indices including acid phosphatase (ACP), myeloperoxidase (MPO), lysozyme activities, and Complement 3 (C3), C4, IgM contents were significantly higher in 1 μg/L quercetin group than these parameters in the control group (P < 0.05). TNF-α and IL-8 mRNA expressions significantly decreased as the levels of quercetin increased up to 1 μg/L and increased thereafter (P < 0.05). 1 and 10 μg/L quercetin groups showed significantly lower TNF-α and IL-8 mRNA levels than the quercetin-free group. Transforming growth factor-β and IL-10 mRNA levels showed an obviously opposite trend with TNF-α expression. The SOD, GPX, CAT, T-AOC activities, and SOD and GPX gene expression in the liver were enhanced with increasing quercetin up to 1 μg/L, and decreased thereafter. MDA contents were affected by quercetin, in which 1 and 10 μg/L quercetin had a significantly lower level than that of the control group (P < 0.05). Defensin and Leap-II mRNA expression in the liver were the highest for fish exposed to 1 μg/L quercetin. The fish that exposed to 1 μg/L quercetin also showed a significantly higher survival rate than these of fish exposed to 0, 0.01, and 1000 μg/L quercetin (P < 0.05). In conclusion, the optimal level of quercetin promotes immunostimulant properties, antioxidant indices, and disease resistance of zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadifar E, Sheikhzadeh N, Roshanaei K, Dargahi N, Faggio C (2019) Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture 507:341–348

    CAS  Google Scholar 

  • Akrami R, Gharaei A, Mansour MR, Galeshi A (2015) Effects of dietary onion (Allium cepa) powder on growth, innate immune response and hemato–biochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile. Fish Shellfish Immunol 4:828–834

    Google Scholar 

  • Alcorn SW, Pascho RJ, Murray AL, Shearer KD (2003) Effects of ration level on immune functions in Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 217:529–545

    Google Scholar 

  • Alía M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L (2006) Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45:19–28

    PubMed  Google Scholar 

  • Aluani D, Tzankova V, Kondevaburdina M, Yordanov Y, Nikolova E, Odzhakov F, Apostolov A, Markova T, Yoncheva K (2017) Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 103:771–782

    CAS  PubMed  Google Scholar 

  • Awad E, Austin B (2010) Use of lupin, Lupinus perennis, mango, Mangifera indica, and stinging nettle, Urtica dioica, as feed additives to prevent Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33:413–420

    CAS  PubMed  Google Scholar 

  • Awad E, Austin D, Lyndon AR (2013) Effect of black cumin seed oil (Nigella sativa) and nettle extract (quercetin) on enhancement of immunity in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 388:193–197

    Google Scholar 

  • Awad E, Awaad AS, Esteban MA (2015) Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 43:43–50

    CAS  PubMed  Google Scholar 

  • Bao N, Ren T, Han Y, Wang F, Chen F, Jiang Z (2017) Alteration of growth, intestinal Lactobacillus, selected immune and digestive enzyme activities in juvenile sea cucumber Apostichopus japonicus, fed dietary multiple probiotics. Aquacult Int 25:1–11

    Google Scholar 

  • Bigliardi B, Galati F (2013) Innovation trends in the food industry: the case of functional foods. Trends Food Sci Tech 31:118–129

    CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  PubMed  Google Scholar 

  • Burgos-Aceves M, Cohen A, Smith Y, Faggio C (2016) Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish Immunol 58:42–49

    CAS  Google Scholar 

  • Camargo CA, Da SM, Da SR, Justo GZ, Gomes-Marcondes MC, Aoyama H (2011) Inhibition of tumor growth by quercetin with increase of survival and prevention of cachexia in Walker 256 tumor-bearing rats. Biochem Biophys Res Commun 406:638–642

    CAS  PubMed  Google Scholar 

  • Capillo G, Savoca S, Costa R, Sanfilippo M, Rizzo C, Giudice A, Albergamo A, Rando R, Bartolomeo G, Spanò N, Faggio C (2019) New insights in the culture method and the antibacterial potential of Gracilaria gracilis. Mar Drugs 16:492–498

    Google Scholar 

  • Christybapita D, Divyagnaneswari M, Michael RD (2007) Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus. Fish Shellfish Immunol 23:840–852

    CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015) Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture 442:29–36

    CAS  Google Scholar 

  • Díaz-Rosales P, Salinas I, Rodríguez A, Cuesta A, Chabrillón M, Balebona MC, Moriñigo MÁ, Esteban MÁ, Meseguer J (2006) Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heat-inactivated potential probiotics. Fish Shellfish Immunolo 20:482–492

    Google Scholar 

  • Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J (1998) Functional food science and defence against reactive oxidative species. Brit J Nutr 80(Suppl 1):S77–S112

    CAS  Google Scholar 

  • Doñate C, Balasch JC, Callol A, Bobe J, Tort L, Mackenzie S (2010) The effects of immunostimulation through dietary manipulation in the rainbow trout; evaluation of mucosal immunity. Mar Biotechnol 12:88–99

    Google Scholar 

  • Elboshy ME, Elashram AM, Abdelhamid FM, Gadalla HA (2010) Immunomodulatory effect of dietary Saccharomyces cerevisiae, β-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol 28:802–808

    CAS  Google Scholar 

  • Ellis AE (1990) Lysozyme assays. Techniques in Fish Immunology

    Google Scholar 

  • Faggio C, Piccione G, Marafioti S, Arfuso F, Fortino G, Fazio F (2014a) Metabolic response to monthly variations of Sparus aurata reared in Mediterranean off-shore tanks. Turk J Fish Aquat Sci 14:567–574

    Google Scholar 

  • Faggio C, Piccione G, Marafioti S, Arfuso F, Trischitta F, Fortino G, Fazio F (2014b) monthly variations of haematological parameters of Sparus aurata and Dicentrarchus labrax reared in Mediterranean land off-shore tanks. Cah Biol Mar 55:437–443

    Google Scholar 

  • Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM (2017) Flavonoids and platelet aggregation: a brief review. Eur J Pharmacol 807:91–101

    CAS  PubMed  Google Scholar 

  • Fast MD, Johnson SC, Jones SR (2007) Differential expression of the pro-inflammatory cytokines IL-1beta-1, TNFalpha-1 and IL-8 in vaccinated pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon juveniles. Fish Shellfish Immunol 22:403–407

    CAS  PubMed  Google Scholar 

  • Feng L, Li JL, Yue GH, Fu JJ, Zhou ZF (2010) Molecular cloning and expression analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in grass carp. Vet Immunol Immunopathol 133:133–143

  • Flohé L, Gunzler WA (1984) Assays of glutathione peroxidase. In: Packer, L. (Ed.), Methods in enzymology. Academic Press, San Diego pp114–121

  • González-Esquivel AE, Charles-Niño CL, Pacheco-Moisés FP, Ortiz GG, Jaramillo-Juárez F, Rincón-Sánchez AR (2015) Beneficial effects of quercetin on oxidative stress in liver and kidney induced by titanium dioxide (TiO2) nanoparticles in rats. Toxicol Mech Methods 25:166–175

    PubMed  Google Scholar 

  • Grinde B (1989) Lysozyme from rainbow trout, Salmo gairdneri Richardson, as an antibacterial agent against fish pathogens. J Fish Dis 12:95–104

    CAS  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect. Mediat Inflamm 2007:45673–45683

    Google Scholar 

  • Han J, Ulevitch RJ (2005) Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6:1198–1205

    CAS  PubMed  Google Scholar 

  • Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343:175–188

    CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Yousefi S, Capillo G, Paknejad H, Khalili M, Tabarraei A, Van Doan H, Spanò N, Faggio C (2018) Mucosal immune parameters, immune and antioxidant defence related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol 83:232–237

    CAS  PubMed  Google Scholar 

  • Jenkins JA, Ourth DD (1993) Opsonic effect of the alternative complement pathway on channel catfish peripheral blood phagocytes. Vet Immunol Immunopathol 39:447–459

    CAS  PubMed  Google Scholar 

  • Johnston RB (1978) Oxygen metabolism and the microbicidal activity of macrophages. Fed Proc 37:2759–2764

    CAS  PubMed  Google Scholar 

  • Kelly GS (2011) Quercetin. Monograph Altern Med Rev A Journal of Clinical Therapeutic 16:172–194

    Google Scholar 

  • Klesius PH (1990) Effect of size and temperature on the quantity of immunoglobulin in channel catfish, Ictalurus punctatus. Vet Immunol Immunopathol 24:187–195

    CAS  PubMed  Google Scholar 

  • Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C, (2016) Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish C arassius auratus fed with a high-cholesterol diet. Fish & Shellfish Immunology 59:250-255

    CAS  Google Scholar 

  • Lee J, Kim SL, Lee S, Chung MJ, Park YI (2013) Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages. BMB Rep 47:382–387

    Google Scholar 

  • Li HX, Lu XJ, Li CH, Chen J (2015) Molecular characterization of the liver-expressed antimicrobial peptide 2 (LEAP-2) in a teleost fish, Plecoglossus altivelis: antimicrobial activity and molecular mechanism. Mol Immunol 65:406–415

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lowry OH (1951) Protein measurement with the folin reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu KL, Wang LN, Zhang DD, Liu WB, Xu WN (2017) Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream megalobrama amblycephala fed high-fat diets [J]. Fish Physio Biochem 43:65–76

    CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    CAS  PubMed  Google Scholar 

  • Lygren B, Hamre K, Waagbø R (1999) Effects of dietary pro- and antioxidants on some protective mechanisms and health parameters in Atlantic salmon. J Aquat Anim Health 11:211–221

    Google Scholar 

  • Magnadottir B, Lange SS, Bogwald J, Dalmo RA (2005) Ontogeny of humoral immune parameters in fish. Fish Shellfish Immunol 19:429–439

    CAS  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    CAS  Google Scholar 

  • Min YD, Choi CH, Bark H, Son HY, Park HH, Lee S, Park JW, Park EK, Shin H, Kim SH (2007) Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm Res 56:210–215

    CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Ngugi CC, Oyoookoth E, Mugobundi J, Orina PS, Chemoiwa EJ, Aloo PA (2015) Effects of dietary administration of stinging nettle (Urtica dioica) on the growth performance, biochemical, hematological and immunological parameters in juvenile and adult Victoria Labeo (Labeo victorianus) challenged with Aeromonas hydrophila. Fish Shellfish Immunol 44:533–541

    CAS  PubMed  Google Scholar 

  • Nielsen ME (1999) An enhanced humoral immune response against the swimbladder nematode, Anguillicola crassus, in the Japanese eel, Anguilla japonica, compared with the European eel. A anguilla J Helminthol 73:227–232

  • Olusola SE, Emike BO, Oleifa FE (2013) The potentials of medicine plants extracts as bio-antimicrobial in aquaculture. Int J Med Arom Plants 3:404–412

    Google Scholar 

  • Ozga JA, Saeed A, Wismer W, Reinecke DM (2007) Characterization of cyanidin- and quercetin-derived flavonoids and other phenolics in mature Saskatoon fruits (Amelanchier alnifolia Nutt.). J Agr Food Chem 55:10414–10424

    CAS  Google Scholar 

  • Pês TS, Saccol EMH, Ourique GM, Londero EP, Gressler LT, Golombieski JI, Glanzner WG, Llesuy SF, Gonçalves PBD, Neto JR (2016) Quercetin in the diet of silver catfish: effects on antioxidant status, blood parameters and pituitary hormone expression. Aquaculture 458:100–106

    Google Scholar 

  • Pês TS, Saccol EMH, Londero ÉP, Bressan CA, Ourique GM, Rizzetti TM, Pretes OD, Zanella R, Baldisserotto B, Pavanato MA (2018) Protective effect of quercetin against oxidative stress induced by oxytetracycline in muscle of silver catfish. Aquaculture 484:120–125

    Google Scholar 

  • Petersen B, Egert S, Bosywestphal A, Müller MJ, Wolffram S, Hubbermann EM, Rimbach G, Schwarz K (2016) Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Res Int 88:159–165

    CAS  PubMed  Google Scholar 

  • Picchitti S, Scapigliati G, Fanelli M, Barbato F, Canese S, Mastrolla L, Mazzini M, Abelli L (2001) Sex-related variations of serum immunoglobulins during reproduction in gilthead sea bream and evidence for a transfer from the female to the eggs. J Fish Biol 59:1503–1511

    Google Scholar 

  • Rashidian G, Bahrami GS, Naderi Farsani M, Prokic MD, Faggio C (2018) The oak (Quercus brantii) acorn as a growth promotor for rainbow trout (Oncorhynchus mykiss): growth performance, body composition, liver enzymes activity and blood biochemical parameters. Natur Prod Res 2:5–13

    Google Scholar 

  • Reverter M, Bontemps N, Lecchini D, Banaigs B, Sasal P (2014) Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433:50–61

    Google Scholar 

  • Riceevans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  Google Scholar 

  • Rombout JH, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    CAS  PubMed  Google Scholar 

  • Rymuszka A, Adaszek Å (2012) Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress--an in vitro study. Fish Shellfish Immunol 33:382–388

    CAS  PubMed  Google Scholar 

  • Secombes CJ, Wang T, Hong S, Peddie S, Crampe M, Laing KJ, Cunningham C, Zou J (2001) Cytokines and innate immunity of fish. Dev Comp Immunol 25:713–723

    CAS  PubMed  Google Scholar 

  • Shin HS, Yoo JH, Min TS, Lee KY, Choi CY (2010) The effects of quercetin on physiological characteristics and oxidative stress resistance in olive flounder, Paralichthys olivaceus. Asian-Australas J Anim Sci 23:573–579

    Google Scholar 

  • Siwicki AK (1993) Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and monocytes, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. Fish Dis Diagn Prev Meth 2:399–405

    Google Scholar 

  • Spagnuolo C, Russo M, Bilotto S, Tedesco I, Laratta B, Russo GL (2012) Dietary polyphenols in cancer prevention: the example of the flavonoid quercetin in leukemia. Ann N Y Acad Sci 1259:95–103

    CAS  PubMed  Google Scholar 

  • Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29:803–809

    PubMed  Google Scholar 

  • Suri S, Taylor MA, Verity A, Tribolo S, Need PW, Kroon PA, Hughes DA, Wilson VG (2008) A comparative study of the effects of quercetin and its glucuronide and sulfate metabolites on human neutrophil function in vitro. Biochem Pharmacol 76:645–653

    CAS  PubMed  Google Scholar 

  • Talpur AD (2014) Mentha piperita (Peppermint) as feed additive enhanced growth performance, survival, immune response and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harveyi infection. Aquaculture 420-421:71–78

    CAS  Google Scholar 

  • Talpur AD, Ikhwanuddin M (2013) Azadirachta indica (neem) leaf dietary effects on the immunity response; and disease resistance of Asian seabass, Lates calcarifer challenged with Vibrio harveyi. Fish Shellfish Immunol 34:254–264

    CAS  PubMed  Google Scholar 

  • Tang HG, TX WU, Zhao ZY, Pan XD (2008) Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). J Zhejiang University-Sci B (Biomed Biotechnol) 9:684–690

    CAS  Google Scholar 

  • Townes CL, Michailidis G, Hall J (2009) The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 387:500–503

    CAS  PubMed  Google Scholar 

  • Verburg-van Kemenade BML, Stolte E, Metz JR, Chadzinska M (2009) Neuroendocrine-immune interactions in teleost fish. In: Bernier NJ, Van Der Kraak G, Farrel AP, Brauner CJ, editors. Fish physiology vol. 28. San Diego: Academic Press Inc pp313–364

  • Vidhya A, Indira M (2009) Protective effect of quercetin in the regression of ethanol-induced hepatotoxicity. Indian J Pharm Sci 71:527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52:6532–6538

    CAS  PubMed  Google Scholar 

  • Wang S, Thacker PA, Watford M, Qiao S (2015) Functions of antimicrobial peptides in gut homeostasis. Curr Protein Pept Sci 16:582–591

    CAS  PubMed  Google Scholar 

  • Wei X, Meng X, Yuan Y, Shen F, Li C, Yang J (2018) Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol Cell Biochem 446:43–52

    CAS  PubMed  Google Scholar 

  • Wen H, Feng L, Jiang W, Liu Y, Jiang J, Li S, Tang L, Zhang Y, Kuang S, Zhou X (2014) Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 40:275–287

    CAS  PubMed  Google Scholar 

  • Whyte SK (2007) The innate immune response of finfish--a review of current knowledge. Fish Shellfish Immunol 23:1127–1151

    CAS  PubMed  Google Scholar 

  • Wu CC, Liu CH, Chang YP, Shuling H (2010) Effects of hot-water extract of Toona sinensis on immune response and resistance to Aeromonas hydrophila in Oreochromis mossambicus. Fish Shellfish Immunol 29:258–263

    PubMed  Google Scholar 

  • Ye SN, Kim WJ, Kim SM, Park JK, Lee SM, Kim SO, Synytsya A, Yong IP (2010) Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens. Int Immunopharmacol 10:364–370

    Google Scholar 

  • Yuan C, Li D, Chen W, Sun F, Wu G, Gong Y, Tang J, Shen M, Han X (2007) Administration of a herbal immunoregulation mixture enhances some immune parameters in carp (Cyprinus carpio). Fish Physiol Biochem 33:93–101

    CAS  Google Scholar 

  • Zhang CN, Li XF, XuWN JGZ, Lu KL, Wang LN, Liu WB (2013) Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immuno 35:1380–1386

    CAS  Google Scholar 

Download references

Funding

This work was funded by the Phd Support Program from Henan University of Scientific and Technology (China, 13480074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunnuan Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, C., Zhang, J. et al. The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio). Fish Physiol Biochem 46, 759–770 (2020). https://doi.org/10.1007/s10695-019-00750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00750-2

Keywords

Navigation