Skip to main content
Log in

Influence of dietary fermented Saccharomyces cerevisiae on growth performance, oxidative stress parameters, and immune response of cultured Oreochromis niloticus

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Our trial was performed to investigate the effect of fully fermented yeast Sacharomyces cerevisiae (Hilyses, ICC Company, Brazil) on the growth performance and immune response of Oreochromis niloticus. In this study, a total of 270 O. niloticus (50.7 ± 0.8 g) were randomly divided into 3 groups in triplicates. The control group was fed on the basal diet while the other two groups were fed on a basal diet supplemented with 0.2% and 0.4% of Hilyses. The trial period extended for 2 months. At the end of the feeding trial, oxidant and antioxidant parameters (MDA, catalase, and glutathione reductase), some innate immunological parameters and immune-related gene expression were measured. Histological examination of liver, spleen, kidney, and intestine was performed. Further, fish groups were challenged against Gram-negative and Gram-positive bacteria; A. hydrophila and L. garvieae. The results revealed significant improvement (p < 0.05) in growth performance and feed utilization in Hilyses-treated groups versus the control group. Blood parameters and liver and kidney functions of Hilyses-supplemented groups were similar to those of the control group. The histological findings of treated groups showed normal tissue structure with multiple focal lymphoid aggregations in the spleen, kidney, and intestine. Both levels of Hilyses successfully enhanced phagocytic activity/index, lysozyme activity, and gene expression of TNF-α, and IL-1β. Fish group fed on 0.4% Hilyses exhibited the highest expression of IL-1β and the least mortality percentages post challenges. Thus, dietary supplementation of Hilyses could promote the growth performance and immunity and increase the resistance of O. niloticus against diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Abu-Elala NM, Ragaa NM (2015) Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. J Adv Res 6(4):621–629

    CAS  PubMed  Google Scholar 

  • Abu-Elala N, Marzouk M, Moustafa M (2013) Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int J Vet Sci Med 1:21–29

    Google Scholar 

  • Abu-Elala NM, Younis NA, AbuBakr HO, Ragaa NM, Borges LL, Bonato MA (2018) Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. Egypt J Aquat Res 44(4):333–341

    Google Scholar 

  • Abu-Elala NM, Samir A, Wasfy M, Elsayed M (2019) Efficacy of injectable and immersion vaccines against streptococcal infections in broodstock and offspring of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 88:293–300

    CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Albro PW, Corbelt JT, Schroeder JL (1986) Application of the thiobarbiturate assay to the measurement of lipid peroxidation products in microsomes. Chem Biol Interact 86:185–194

    Google Scholar 

  • Aramli MS, Kamangar B, Nazari RM (2015) Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol 47:606–610

    CAS  PubMed  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Beaulaurier J, Bickford N, Gregg JL, Grady CA, Gannam AL, Winton JR, Hershberger PK (2012) Susceptibility of Pacific herring to viral hemorrhagic septicemia is influenced by diet. J Aquat Anim Health 24(1):43–48

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burrells C, Williams PD, Forno PF (2001a) Dietary nucleotides: a novelsupplement in fish feeds 1. Effects on resistance to disease in salmonoids. Aquaculture 199:159–169

    CAS  Google Scholar 

  • Burrells C, Williams PD, Southgate PJ, Wadsworth SL (2001b) Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, saltwater transfer, growth rates and physiology of Atlantic salmon (Salmo salar L.). Aquaculture 199:171–184

    CAS  Google Scholar 

  • Carver JD, Walker WA (1995) The role of nucleotides in human nutrition. J Nutr Biochem 6:58–72

    CAS  Google Scholar 

  • Chang CF, Su MS, Chen HY, Liao IC (2003) Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish immunol 15(4):297–310

    CAS  PubMed  Google Scholar 

  • Cheng Z, Buentello A, Gatlin DM (2011) Dietary nucleotides influence immune responses and intestinal morphology of red drum Sciaenops ocellatus. Fish Shellfish Immunol 30:143

    CAS  PubMed  Google Scholar 

  • Choudhury D, Pal AK, Sahu NP, Kumar S, Das SS, Mukherjee SC (2005) Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita L.) juveniles. Fish Shell fish Immunol 19:281–291

    CAS  Google Scholar 

  • Citarasu T, Sivaram V, Immanuel G, Rout N, Murugan V (2006) Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeusmonodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol 21(4):372–384

    PubMed  Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, Basuini MF, Hossain MS et al (2017) Dietary Supplementation of ß-glucan improve growth performance, the innate immune response and stress resistance of red sea bream, Pagrus major. Aquacult Nutr 23:148–159

    CAS  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture. 300(1):182–188

    CAS  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg DM , Spooner RJ (1983). In methods of enzymatic analysis. In: Bergmeyen HV (ed) 3rd edn. vol. 3, pp 258–265

  • Grisdale-Helland B, Helland SJ, Gatlin DM (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture. 283(1):163–167

    CAS  Google Scholar 

  • Gu M, Ma H, Mai K, Zhang W, Bai N, Wang X (2011) Effects of dietary β-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol 31(2):303–309

    CAS  PubMed  Google Scholar 

  • Heidarieh M, Mirvaghefi AR, Akbari M, Sheikhzadeh N, Kamyabi-Moghaddam Z, Askari H, Shahbazfar AA (2013) Evaluations of Hilyses™, fermented Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, enzymatic activities and gastrointestinal structure. Aquac Nutr 19(3):343–348

    CAS  Google Scholar 

  • Husdan H, Rapoport A (1968) Estimation of creatinine by the Jaffe reaction. A comparison of three methods. Clin Chem 14:222–238

    CAS  PubMed  Google Scholar 

  • Huu HD, Tabrett S, Hoffmann K, Köppel P, Lucas JS, Barnes AC (2012) Dietary nucleotides are semi-essential nutrients for optimal growth of black tiger shrimp (Penaeus monodon). Aquaculture 366(367):115–121

    Google Scholar 

  • Huu HD, Sang HM, Thuy NTT (2016) Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish Shellfish Immunol 54:402–410

    PubMed  Google Scholar 

  • Jha AK, Pal A, Sahu N, Kumar S, Mukherjee S (2007) Haemato-immunological responses to dietary yeast RNA, ω-3 fatty acid and β-carotene in Catla catla juveniles. Fish Shellfish Immunol. 23:917–927

    CAS  PubMed  Google Scholar 

  • Jørgensen JB, Sharp GJ, Secombes CJ, Robertsen B (1993) Effect of a yeast-cell-wall glucan on the bactericidal activity of rainbow trout macrophages. Fish Shellfish Immunol 3(4):267–277

    Google Scholar 

  • Kim YS, Ke F, Zhang QY (2009) Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish Shellfish Immunol 27(2):336–340

    CAS  PubMed  Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Msangi S, Batka M, Vannuccini S, Dey MM, Anderson JL (2015) Fish to 2030: the role and opportunity for aquaculture. Aquac Econ Manag 19(3):282–300

    Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (2005) Principles of Biochemistry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Li P, Gatlin DM III (2004) Dietary brewers yeast and the prebiotic Grobiotic AE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops 9 M. saxatilis) to Streptococcus iniae infection. Aquaculture 231:445–456

    Google Scholar 

  • Li P, Gatlin DM III, Neill WH (2007a) Dietary supplementation of a purifiednucleotide mixture transiently enhanced growth and feed utilization ofjuvenile red drum, Sciaenops ocellatus. J World Aquacult Soc 38:281–286

    Google Scholar 

  • Li P, Lawrence A, Castille FL, Gatlin DM (2007b) Preliminary evaluation of a purified nucleotide mixture as dietary supplement for Pacific white shrimp (Litopenaeus vannamei). Aquacult Res 38:887–890

    CAS  Google Scholar 

  • Lin H, Wang H, Shiau SY (2009) Dietary nucleotide supplementation enhances growth and immune responses of grouper, Epinephelus malabaricus. Aquacult Nutr 15:117–122

    CAS  Google Scholar 

  • Lin S, Pan Y, Luo L, Luo L (2011) Effects of dietary β-1, 3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunol 31(6):788–794

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen HD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lopez NCG, Gaxiola G, Taboada G, Valenzuela M, Pascual C, Sánchez A, Rosas C (2003) Physiological, nutritional, and immunological role of dietary β-1,3-glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 224:223243

    CAS  Google Scholar 

  • Løvoll M, Fischer U, Mathisen GS, Bøgwald J, Ototake M, Dalmo RA (2007) The C3 subtypes are differentially regulated after immunostimulation in rainbow trout, but head kidney macrophages do not contribute to C3 transcription. Vet Immunol Immunopathol 117(3):284–295

    PubMed  Google Scholar 

  • Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006) Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255:82–94

    CAS  Google Scholar 

  • Moffitt CM, Cajas-Cano L (2014) Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries 39(11):552–553

    Google Scholar 

  • Murthy HS, Li P, Lawrence AL, Gatlin DM (2009) Dietary b-glucan and nucleotide effects on growth, survival and immune responses of Pacific white shrimp, Litopenaeus vannamei. J Appl Aquacult 21:160–168

    Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    CAS  PubMed  Google Scholar 

  • Newman K (2007) Form follows function in picking MOS product. Feedstuffs 27

  • NRC (2011) Nutrient requirements of fish. National Academies Press, Washington, DC

    Google Scholar 

  • Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35(2):83–108

    CAS  PubMed  Google Scholar 

  • Ortuno A, Quesada M, Lopez-Claessens S, Castella J et al (2007) The role of wild boar (Sus scrofa) in the eco-epidemiology of R. slovaca in northeastern Spain. Vector Borne Zoonotic Dis 7:59–64

    CAS  PubMed  Google Scholar 

  • Peng M, Xu W, Ai Q, Mai K, Liufu Z, Zhang K (2013) Effects of nucleotide supplementation on growth, immune responses and intestinal morphology in juvenile turbot fed diets with graded levels of soybeam meal (Scophtalmus maximus L.). Aquaculture 392(395):51–58

    Google Scholar 

  • Pionnier N, Falco A, Miest J, Frost P, Irnazarow I, Shrive A, Hoole D (2013) Dietary β-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection. Fish Shellfish Immunol 34(3):819–831

    CAS  PubMed  Google Scholar 

  • Przybylska-Diaz DA, Schmidt JG, Vera-Jimenez NI, Steinhagen D, Nielsen ME (2013) β-glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 35(3):998–1006

    CAS  PubMed  Google Scholar 

  • Raa, J (1992). The use of immunostimulants to increase resistance of aquatic organism to microbial infections. Dis Asian Aquacult 39–50

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  • Ringo E, Olsen RE, Vecino JLG, Wadsworth S, Song SK (2012) Use of immunostimulants and nucleotides in aquaculture: a review. J Marine Sci Res Dev 1:104

    Google Scholar 

  • Ringø E, Faggio C, Chitmanat C, Doan H, Mai NT, Jaturasitha S, Hoseinifar SH (2018) Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture 495(1):786–793

    Google Scholar 

  • Rodríguez I, Chamorro R, Novoa B, Figueras A (2009) β-Glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio). Fish Shellfish Immunol 27(2):369–373

    PubMed  Google Scholar 

  • Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172(1):63–92

    CAS  Google Scholar 

  • Sakai M, Taniguchi K, Mamoto K, Ogawa H, Tabata M (2001) Immunostimulant effects of nucleotide isolated from yeast RNA on carp, Cyprinus carpio L. J Fish Dis 24:433–438

    CAS  Google Scholar 

  • Sang HM, Fotedar R (2010) Effects of dietary β–1, 3–glucan on the growth, survival, physiological and immune response of marron, Cherax tenuimanus (smith, 1912). Fish Shellfish Immunol 28(5):957–960

    CAS  PubMed  Google Scholar 

  • Sauer N, Mosenthin R, Bauer E (2011) The role of dietary nucleotides in single stomached animals. Nutr Res Rev 24:46–59

    CAS  PubMed  Google Scholar 

  • Scholz U, Diaz GG, Ricque D, Suarez LC, Albores FV, Latchford J (1999) Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products. Aquaculture 176(3):271–283

    Google Scholar 

  • Sealey WM et al (2008) Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim Feed Sci Technol 141(1):115–128

    CAS  Google Scholar 

  • Selim KM, Reda RM (2015) Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile Tilapia. N Am J Aquac 77(1):22–30

    Google Scholar 

  • Sheikhzadeh N, Heidarieh M, Pashaki AK, Nofouzi K, Farshbafi MA, Akbari M (2012) Hilyses®, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 32(6):1083–1087

    CAS  PubMed  Google Scholar 

  • Staykov Y, Spring P, Denev S, Sweetman J (2007) Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquac Int 15(2):153–161

    CAS  Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Robaina L, Real F, Izquierdo MS (2007) Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish Shellfish Immunol 23(5):969–981

    CAS  PubMed  Google Scholar 

  • Van der Marel M, Adamek M, Gonzalez SF, Frost P, Rombout JH, Wiegertjes GF, Steinhagen D (2012) Molecular cloning and expression of two β-defensin and two mucin genes in common carp (Cyprinus carpio L.) and their up-regulation after β-glucan feeding. Fish Shellfish Immunol 32(3):494–501

    PubMed  Google Scholar 

  • Verlhac V, Gabaudan J, Obach A, Schüep W, Hole R (1996) Influence of dietary glucan and vitamin C on non-specific and specific immune responses of rainbow trout (Oncorhynchus mykiss). Aquaculture 143(2):123–133

    CAS  Google Scholar 

  • Welker TL et al (2007) Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J World Aquacult Soc 38(1):24–35

    Google Scholar 

  • Zhang J, Liu Y, Tian L, Yang H, Liang G, Xu D (2012) Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 3:1027–1032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NMA-E and NAY contributed to the design of the experimental study, growth performance, haematological, immune response evaluation, and challenge test. HOAB determined the oxidant and antioxidant parameters and molecular and gene expression study. NMR contributed to the experimental diet formulation. LLB and MAB supply the study with Hilyses® product. All authors read and revised the manuscript.

Corresponding author

Correspondence to Nermeen M. Abu-Elala.

Ethics declarations

Ethics

The research was conducted in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals approved by the Institutional Animal Use and Care Committee (IACUC), Cairo University, Giza, Egypt. All authors have reviewed the manuscript and approved its submission for publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Elala, N.M., Younis, N.A., AbuBakr, H.O. et al. Influence of dietary fermented Saccharomyces cerevisiae on growth performance, oxidative stress parameters, and immune response of cultured Oreochromis niloticus. Fish Physiol Biochem 46, 533–545 (2020). https://doi.org/10.1007/s10695-019-00711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00711-9

Keywords

Navigation