Skip to main content
Log in

Inhibition of intestinal lipases alleviates the adverse effects caused by high-fat diet in Nile tilapia

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Intestinal lipases are fat-digesting enzymes, which play vital roles in lipid absorption in the intestine. To study the regulation of intestinal lipase activity in systemic lipid metabolism in fish, especially in the metabolic diseases caused by high-fat diet (HFD) feeding, we inhibited intestinal lipases in Nile tilapia to investigate the physiological consequences. In the present study, Nile tilapia were firstly fed with HFD (12% fat) for 6 weeks to establish a fatty fish model. Afterwards, Orlistat as a potent intestinal lipase inhibitor was added into the HFD for the following 5-week feeding trial, with two dietary doses (Orlistat16 group, 16 mg/kg body weight; Orlistat32 group, 32 mg/kg body weight). After the trial, both doses of Orlistat treatment significantly reduced intestinal lipase activity, fat absorption, hepatic lipid accumulation, and gene expression of lipogenesis, whereas increased gene expression of lipid catabolism. Moreover, intestinal lipase inhibition increased immune enzyme activities, antioxidant capacity, and gene expression of anti-inflammatory cytokines, whereas lowered gene expression of pro-inflammatory cytokines. Besides, Orlistat could also improve the structure of the intestine and increase expression of intestinal tight-coupling protein. Taken together, intestinal lipase inhibition alleviated the adverse effects caused by HFD in Nile tilapia. Thus, intestinal lipases played key roles in absorbing dietary lipid and could be a promising target in regulating systemic lipid metabolism in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera-Angel E-Y, Espinal-Ruiz M, Narváez-Cuenca C-E (2018) Pectic polysaccharides with different structural characteristics as inhibitors of pancreatic lipase. Food Hydrocoll 83:229–238. https://doi.org/10.1016/j.foodhyd.2018.05.009

    Article  CAS  Google Scholar 

  • Ali KR, Kapur P, Jain A, Farah F, Bhandari UJT, Management CR (2017) Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients. Ther Clin Risk Manag 13:139–149

    Article  CAS  Google Scholar 

  • Alqahtani S, Qosa H, Primeaux B, Kaddoumi A (2015) Orlistat limits cholesterol intestinal absorption by Niemann-pick C1-like 1 (NPC1L1) inhibition. Eur J Pharmacol 762:263–269. https://doi.org/10.1016/j.ejphar.2015.05.060

    Article  CAS  PubMed  Google Scholar 

  • Annamalai S, Mohanam L, Raja V, Dev A, Prabhu V (2017) Antiobesity, antioxidant and hepatoprotective effects of Diallyl trisulphide (DATS) alone or in combination with Orlistat on HFD induced obese rats. Biomed Pharmacother 93:81–87. https://doi.org/10.1016/j.biopha.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  • Awad WA, Ghareeb K, Abdel-Raheem S (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR (2015) Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): effects on tissue fatty acid composition, histology and gene expression. Aquaculture 444:1–12. https://doi.org/10.1016/j.aquaculture.2015.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boi SK, Buchta CM, Pearson NA, Francis MB, Meyerholz DK, Grobe JL, Norian LA (2016) Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high-fat diet. Obesity Med 24(10):2140–2149

    Article  CAS  Google Scholar 

  • Bouchaâla E, BouAli M, Ali YB, Miled N, Gargouri Y, Fendri DA (2015) Biochemical characterization and molecular modeling of pancreatic lipase from a cartilaginous fish, the common stingray (Dasyatis pastinaca ). Appl Biochem 176(1):1–19

    Article  CAS  Google Scholar 

  • Brown RC, Morris AP, O'Neil RG (2007) Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Chalkiadaki A, Guarente L (2012) High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 16(2):180–188. https://doi.org/10.1016/j.cmet.2012.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Buentello A, Iii DMG (2011) Dietary nucleotides influence immune responses and intestinal morphology of red drum Sciaenops ocellatus. Fish Shellfish Immunol 30(1):143–147

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Hernandez C, Oliveira M, Pescia G, Moulin J, Masserey-Elmelegy I, Dionisi F, Destaillats F (2010) Lipase inhibitor orlistat decreases incorporation of eicosapentaenoic and docosahexaenoic acids in rat tissues. Nutr Res 30(2):134–140. https://doi.org/10.1016/j.nutres.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Antoine JM, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, Gibson GR, Guarner F, Isolauri E, Pannemans D (2004) PASSCLAIM--gut health and immunity. Eur J Nutr 43(Suppl 2):II118

    PubMed  Google Scholar 

  • de Gelder S, Saele O, de Veen BTH, Vos J, Flik G, Berntssen MHG, Klaren PHM (2017) The polycyclic aromatic hydrocarbons benzo[a]pyrene and phenanthrene inhibit intestinal lipase activity in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 198:1–8. https://doi.org/10.1016/j.cbpc.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  • Deng JM, Mai KS, Ai QH, Zhang WB, Tan BP, Xu W, Zhiguo L (2010) Alternative protein sources in diets for Japanese flounder Paralichthys olivaceus (Temminck and Schlegel): II. Effects on nutrient digestibility and digestive enzyme activity. Aquac Res 41(6):861–870

    Article  CAS  Google Scholar 

  • Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:1–17

    Article  Google Scholar 

  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143(2):391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilham D, Lehner R (2005) Techniques to measure lipase and esterase activity in vitro. Methods 36(2):139–147. https://doi.org/10.1016/j.ymeth.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  • Gilham D, Labonte ED, Rojas JC, Jandacek RJ, Howles PN, Hui DY (2007) Carboxyl ester lipase deficiency exacerbates dietary lipid absorption abnormalities and resistance to diet-induced obesity in pancreatic triglyceride lipase knockout mice. J Biol Chem 282(34):24642–24649. https://doi.org/10.1074/jbc.M702530200

    Article  CAS  PubMed  Google Scholar 

  • Glandt M, Raz I (2011) Present and future: pharmacologic treatment of obesity. J Obes 2011:636181–636113. https://doi.org/10.1155/2011/636181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Li H, Xu H, Halim V, Thomas LN, Woo S-L, Huo Y, Chen YE, Sturino JM, Wu C (2013) Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of PPARγ activation on diet-induced intestine inflammatory response. J Nutr Biochem 24(5):770–775. https://doi.org/10.1016/j.jnutbio.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  • Han XN, Fink MP, Delude RL (2003) Proinflammatory cytokines cause no center dot-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19(3):229–237. https://doi.org/10.1097/01.shk.0000055726.19899.41

    Article  CAS  PubMed  Google Scholar 

  • Harp JB (1998) An assessment of the efficacy and safety of orlistat for the long-term management of obesity. J Nutr Biochem 9(9):516–521

    Article  CAS  Google Scholar 

  • He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, Qiao F, Li DL, Zhang ML, Du ZY (2015) Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Phys Rep 3(8):e12485

    Article  CAS  Google Scholar 

  • Heck AM, Yanovski JA, Calis KA (2012) Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20(3):270–279

    Article  Google Scholar 

  • Howard W, Schotz MC (2002) The lipase gene family. J Lipid Res 43(7):993–999

    Article  CAS  Google Scholar 

  • Hubler MJ, Kennedy AJ (2016) Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 34:1–7. https://doi.org/10.1016/j.jnutbio.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  • Jin W (2002) Lipase H, a new member of the triglyceride lipase family synthesized by the intestine. Genomics 80(3):268–273

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Tian LX, Zeng SL, Xie SW, Yang HJ, Liang GY, Liu YJ (2013) Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 34(5):1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Li DL, Huang YJ, Gao S, Chen LQ, Zhang ML, Du ZY (2019a) Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere 221:768–777. https://doi.org/10.1016/j.chemosphere.2019.01.094

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li J, Mao G, Yan L, Hu Y, Ye X, Tian D, Linhardt RJ, Chen S (2019b) Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice. J Funct Foods 55:193–210. https://doi.org/10.1016/j.jff.2019.02.001

    Article  CAS  Google Scholar 

  • Liu S, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zeng YY, Xu SD, Kuang SY, Tang L (2016) Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella ). Fish Shellfish Immunol 55:88–105

    Article  PubMed  CAS  Google Scholar 

  • Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288(3):G422–G430

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Li L-Y, Le J-Y, Lu D-L, Qiao F, Zhang M-L, Du Z-Y, Li D-L (2018) Dietary microencapsulated oil improves immune function and intestinal health in Nile tilapia fed with high-fat diet. Aquaculture 496:19–29. https://doi.org/10.1016/j.aquaculture.2018.06.080

    Article  CAS  Google Scholar 

  • Mark E, Mario K, Ritter PR, Holst JJ, Karl-Heinz H, Schmidt WE, Frank S, Meier JJ (2008) Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations. J Clin Endocrinol Metab 93(10):3995–3998

    Article  CAS  Google Scholar 

  • Nanton DA, Lall SP, Mcniven MA (2015) Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquac Res 32(s1):225–234

    Google Scholar 

  • Nayak J, Viswanathan Nair PG, Ammu K, Mathew S (2003) Lipase activity in different tissues of four species of fish: rohu (Labeo rohita Hamilton), oil sardine (Sardinella longiceps Linnaeus), mullet (Liza subviridis Valenciennes) and Indian mackerel (Rastrelliger kanagurta Cuvier). J Sci Food Agric 83(11):1139–1142. https://doi.org/10.1002/jsfa.1515

    Article  CAS  Google Scholar 

  • Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR (2019) Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 68:16–32. https://doi.org/10.1016/j.jnutbio.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  • Ning L-J, He A-Y, Li J-M, Lu D-L, Jiao J-G, Li L-Y, Li D-L, Zhang M-L, Chen L-Q, Du Z-Y (2016) Mechanisms and metabolic regulation of PPARα activation in Nile tilapia (Oreochromis niloticus). Biochim Biophys Acta (BBA)- Mol Cell Biol Lipids 1861(9, Part A):1036–1048. https://doi.org/10.1016/j.bbalip.2016.06.005

    Article  CAS  Google Scholar 

  • Ning LJ, He AY, Lu DL, Li JM, Qiao F, Li DL, Zhang ML, Chen LQ, Du ZY (2017) Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus). Sci Rep 7. https://doi.org/10.1038/srep41706

  • Nishioka T, Hafkamp AM, Havinga R, Van Lierop PPE, Velvis H, Verkade HJ (2003) Orlistat treatment increases fecal bilirubin excretion and decreases plasma bilirubin concentrations in hyperbilirubinemic Gunn rats. J Pediatr 143(3):327–334. https://doi.org/10.1067/s0022-3476(03)00298-1

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T (2006) Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 145(2):168–178

    Article  PubMed  CAS  Google Scholar 

  • Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555):71–77. https://doi.org/10.1016/S0140-6736(07)60033-6

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Li LY, Li JM, Wang WL, Limbu SM, Degrace P, Li DL, Du ZY (2017) Inhibited fatty acid beta-oxidation impairs stress resistance ability in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 68:500–508. https://doi.org/10.1016/j.fsi.2017.07.058

    Article  CAS  PubMed  Google Scholar 

  • Raben DM, Baldassare JJ (2005) A new lipase in regulating lipid mobilization: hormone-sensitive lipase is not alone. Trends Endocrinol Metab 16(2):35–36. https://doi.org/10.1016/j.tem.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  • Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42. https://doi.org/10.1016/j.cellimm.2018.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sascha O, Chandak PG, Patankar JV, Silvia P, Stefanie S, Kershaw EE, Bogner-Strauss JG, Gerald H, Sanja LF, Dagmar K (2013) Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J Lipid Res 54(2):425–435

    Article  CAS  Google Scholar 

  • Sun Z, Tan X, Ye H, Zou C, Ye C, Wang A (2018) Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immunol 73:234–244. https://doi.org/10.1016/j.fsi.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Yan J, Xu W, Ai Q, Mai K (2016) Characterization of Cyclooxygenase-2 and its induction pathways in response to high lipid diet-induced inflammation in Larmichthys crocea. Sci Rep 6(276):1–13

    Google Scholar 

  • Wen H, Feng L, Jiang W, Liu Y, Jiang J, Li S, Tang L, Zhang Y, Kuang S, Zhou X (2014) Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp ( Ctenopharyngodon idella ). Fish Shellfish Immunol 40(1):275–287

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obes 24(6):758–764

    Article  CAS  Google Scholar 

  • Yan J, Liao K, Wang TJ, Mai KS, Xu W, Ai QH (2015) Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS One 10(6):16. https://doi.org/10.1371/journal.pone.0129937

    Article  CAS  Google Scholar 

  • Yilmaz E (2003) Orlistat-induced molecular bio-imprinting of microbial lipase. World J Microbiol Biotechnol 19(2):161–165. https://doi.org/10.1023/a:1023216301165

    Article  CAS  Google Scholar 

  • Yu X, Wang X-P, Lei F, Jiang J-F, Li J, Xing D-M, Du L-J (2017) Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity. Chin J Nat Med 15(10):732–739. https://doi.org/10.1016/S1875-5364(17)30104-8

    Article  PubMed  Google Scholar 

  • Zongxian C, Mulvihill MM, Partha M, Huan X, Katalin E, Enkui H, Eileen H (2013) Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 144(4):808–817.e815

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (Key Program 31830102) and Program of Shanghai Academic Research Leader (19XD1421200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Jiang, ZY., Han, SL. et al. Inhibition of intestinal lipases alleviates the adverse effects caused by high-fat diet in Nile tilapia. Fish Physiol Biochem 46, 111–123 (2020). https://doi.org/10.1007/s10695-019-00701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00701-x

Keywords

Navigation