Skip to main content
Log in

Evaluation of the i-STAT (portable clinical analyser) for measuring haematological parameters in Atlantic cod (Gadus morhua) at different CO2 and temperature conditions

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Portable clinical analysers are gradually being involved in on-site assessment of haematic parameters in fish. The purpose of this study was to evaluate the i-STAT portable clinical analyser (i-STAT PCA) for accuracy and reliability of measuring blood pH, partial pressure of oxygen (pO2), haematocrit, haemoglobin, sodium, potassium and calcium in Atlantic cod (Gadus morhua). Haematological parameters detected with the i-STAT PCA were compared with conventional laboratory techniques (CLTs). Two types of disposable cartridges were used (CHEM8+ and CG4+) with the i-STAT PCA, and experiments were performed at two different temperature regimes (5 °C and 15 °C) and four different carbon dioxide (CO2) levels (0%, 0.1%, 0.5% and 1%). All blood parameters measured with the i-STAT PCA showed heterogeneous inaccuracy under the tested conditions, but the highest discrepancies were registered in blood pO2. The i-STAT PCA systematically overestimated the pO2 measurements. Our research suggests that i-STAT PCA is not an appropriate tool for pO2 measurements especially in coldwater fish species. The i-STAT PCA consistently underestimated the pH and haematocrit values especially at a lower temperature, although those parameters indicate significant high correlation at 15 °C. Furthermore, the analysed ions showed overestimation of sodium and underestimation of potassium and calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott (2009) i-STAT®1 system manual. Abbott Point of Care Inc, Abbott Park, IL USA

  • Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317. https://doi.org/10.2307/2987937

    Article  Google Scholar 

  • Andrewartha SJ, Munns SL, Edwards A (2016) Calibration of the HemoCue point-of-care analyser for determining haemoglobin concentration in a lizard and a fish. Conserv Physiol 4:cow006–cow006. https://doi.org/10.1093/conphys/cow006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audet C, Besner M, Munro J, Dutil JD (1993) Seasonal and diel variations of various blood parameters in Atlantic cod (Gadus morhua) and American plaice (Hippoglossoides platessoides). Can J Zool-Rev Can Zool 71:611–618

    Article  Google Scholar 

  • Bingham D, Kendall J, Clancy M (1999) The portable laboratory: an evaluation of the accuracy and reproducibility of i-STAT (c). Ann Clin Biochem 36:66–71

    Article  CAS  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England) 1:307–310

    Article  CAS  Google Scholar 

  • Brill RW, Bushnell PG (1991) Effects of open- and closed-system temperature changes on blood oxygen dissociation curves of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares. Can J Zool-Rev Can Zool 69:1814–1821. https://doi.org/10.1139/z91-250

    Article  Google Scholar 

  • Brill RW, Bushnell PG, Jones DR, Shimizu M (1992) Effects of acute temperature change, in vivo and in vitro, on the acid–base status of blood from yellowfin tuna (Thunnus albacares). Can J Zool-Rev Can Zool 70:654–662. https://doi.org/10.1139/z92-098

    Article  Google Scholar 

  • Brix O, Foras E, Strand I (1998) Genetic variation and functional properties of Atlantic cod hemoglobins: introducing a modified tonometric method for studying fragile hemoglobins. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 119:575–583

    Article  CAS  Google Scholar 

  • Burnett RW, Covington AK, Fogh-Andersen N, Külpmann WR, Lewenstam A, Maas AHJ, VanKessel AL, Zijlstra WG (2001) IFCC reference measurement procedure for substance concentration determination of total carbon dioxide in blood, plasma or serum. Clin Chem Lab Med 39:283–288. https://doi.org/10.1515/cclm.2001.39.3.283

    Article  CAS  Google Scholar 

  • Burnett RW, Covington AK, Foghandersen N, Kulpmann WR, Maas AHJ (1995) Approved IFCC recommendation on definitions of quantities and conventions related to blood gases and pH. Eur J Clin Chem Clin Biochem 33:399–404

    CAS  PubMed  Google Scholar 

  • Cecchini S, Saroglia M, Caricato G, Terova G, Sileo L (2001) Effects of graded environmental hypercapnia on sea bass (Dicentrarchus labrax L.) feed intake and acid-base balance. Aquac Res 32:499–502. https://doi.org/10.1046/j.1365-2109.2001.00595.x

    Article  Google Scholar 

  • Claiborne JB, Heisler N (1986) Acid-base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during graded long- and short-term environmental hypercapnia, and the effect of bicarbonate infusion. J Exp Biol 126:41–61

    CAS  PubMed  Google Scholar 

  • Clark TD, Eliason EJ, Sandblom E, Hinch SG, Farrell AP (2008) Calibration of a hand-held haemoglobin analyser for use on fish blood. J Fish Biol 73:2587–2595. https://doi.org/10.1111/j.1095-8649.2008.02109.x

    Article  Google Scholar 

  • Cooke SJ, Suski CD, Danylchuk SE, Danylchuk AJ, Donaldson MR, Pullen C, Bulté G, O’toole A, Murchie KJ, Koppelman JB, Shultz AD, Brooks E, Goldberg TL (2008) Effects of different capture techniques on the physiological condition of bonefish Albula vulpes evaluated using field diagnostic tools. J Fish Biol 73:1351–1375

    Article  CAS  Google Scholar 

  • Crocker CE, Cech JJ (1998) Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. J Comp Physiol B-Biochem Syst Environ Physiol 168:50–60. https://doi.org/10.1007/s003600050120

    Article  CAS  Google Scholar 

  • DiMaggio MA, Ohs CL, Petty BD (2010) Evaluation of a point-of-care blood analyzer for use in determination of select hematological indices in the seminole killifish. N Am J Aqualcult 72:261–268. https://doi.org/10.1577/a09-067.1

    Article  Google Scholar 

  • Ellis T, Berrill I, Lines J, Turnbull JF, Knowles TG (2012) Mortality and fish welfare. Fish Physiol Biochem 38:189–199. https://doi.org/10.1007/s10695-011-9547-3

    Article  CAS  PubMed  Google Scholar 

  • Foss A, Kristensen T, Atland A, Hustveit H, Hovland H, Ofsti A, Imsland AK (2006) Effects of water reuse and stocking density on water quality, blood physiology and growth rate of juvenile cod (Gadus morhua). Aquaculture 256:255–263. https://doi.org/10.1016/j.aquaculture.2006.02.032

    Article  Google Scholar 

  • Gallagher AJ, Frick LH, Bushnell PG, Brill RW, Mandelman JW (2010) Blood gas, oxygen saturation, pH, and lactate values in elasmobranch blood measured with a commercially available portable clinical analyzer and standard laboratory instruments. J Aquat Anim Health 22:229–234. https://doi.org/10.1577/h10-012.1

    Article  PubMed  Google Scholar 

  • Gault MH, Harding CE (1996) Evaluation of i-STAT portable clinical analyzer in a hemodialysis unit. Clin Biochem 29:117–124

    Article  CAS  Google Scholar 

  • Groff JM, Zinkl JG (1999) Hematology and clinical chemistry of cyprinid fish. Common carp and goldfish The veterinary clinics of North America Exotic animal practice 2:741–776

  • Harrenstien LA, Tornquist SJ, Miller-Morgan TJ, Fodness BG, Clifford KE (2005) Evaluation of a point-of-care blood analyzer and determination of reference ranges for blood parameters in rockfish. JAVMA-J Am Vet Med Assoc 226:255–265

    Article  Google Scholar 

  • Harter TS, Morrison PR, Mandelman JW, Rummer JL, Farrell AP, Brill RW, Brauner CJ (2015) Validation of the i-STAT system for the analysis of blood gases and acid-base status in juvenile sandbar shark (Carcharhinus plumbeus). Conserv Physiol 3:10. https://doi.org/10.1093/conphys/cov002

    Article  CAS  Google Scholar 

  • Harter TS, Shartau RB, Brauner CJ, Farrell AP (2014) Validation of the i-STAT system for the analysis of blood parameters in fish. Conserv Physiol 2:12. https://doi.org/10.1093/conphys/cou037

    Article  CAS  Google Scholar 

  • Hayashi M, Kita J, Ishimatsu A (2004) Acid-base responses to lethal aquatic hypercapnia in three marine fishes. Mar Biol 144:153–160. https://doi.org/10.1007/s00227-003-1172-y

    Article  CAS  Google Scholar 

  • Ishimatsu A, Hayashi M, Lee KS, Kikkawa T, Kita J (2005) Physiological effects on fishes in a high-CO2 world. J Geophys Res-Oceans 110:C09s09. https://doi.org/10.1029/2004jc002564

    Article  Google Scholar 

  • Iversen M, Finstad B, McKinley RS, Eliassen RA (2003) The efficacy of metomidate, clove oil, Aqui-S™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture 221:549–566. https://doi.org/10.1016/S0044-8486(03)00111-X

    Article  CAS  Google Scholar 

  • Jacobs E, Vadasdi E, Sarkozi L, Colman N (1993) Analytical evaluation of i-STAT portable clinical analyzer and use by nonlaboratory health-care professionals. Clin Chem 39:1069–1074

    CAS  PubMed  Google Scholar 

  • Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motyka R, Dupont S, Portner HO (2015) Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp Physiol B-Biochem Syst Environ Physiol 185:767–781. https://doi.org/10.1007/s00360-015-0923-7

    Article  CAS  Google Scholar 

  • Mandelman JW, Skomal GB (2009) Differential sensitivity to capture stress assessed by blood acid-base status in five carcharhinid sharks. J Comp Physiol B-Biochem Syst Environ Physiol 179:267–277. https://doi.org/10.1007/s00360-008-0306-4

    Article  Google Scholar 

  • Martins CIM, Galhardo L, Noble C, Damsgård B, Spedicato MT, Zupa W, Beauchaud M, Kulczykowska E, Massabuau JC, Carter T, Planellas SR, Kristiansen T (2012) Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem 38:17–41. https://doi.org/10.1007/s10695-011-9518-8

    Article  CAS  PubMed  Google Scholar 

  • Matburger C, Henke J, Hirschberger J, Matburger S, Erhardt W (2000) Evaluation of the i-STAT portable clinical analyzer in dogs Tierarztl Prax Ausg Kleintiere Heimtiere 28:132–137

  • Mock T, Morrison D, Yatscoff R (1995) Evaluation of the i-STAT™ system: a portable chemistry analyzer for the measurement of sodium, potassium, chloride, urea, glucose, and hematocrit. Clin Biochem 28:187–192

    Article  CAS  Google Scholar 

  • Murthy JN, Hicks JM, Soldin SJ (1997) Evaluation of i-STAT portable clinical analyzer in a neonatal and pediatric intensive care unit. Clin Biochem 30:385–389

    Article  CAS  Google Scholar 

  • Noble C, Gismervik K, Iversen MH, Kolarevic J, Nilsson J, Stien LH, Turnbull JF (2018) Welfare indicators for farmed Atlantic salmon: tools for assessing fish welfare

  • Pettersen JM, Bracke MBM, Midtlyng PJ, Folkedal O, Stien LH, Steffenak H, Kristiansen TS (2014) Salmon welfare index model 2.0: an extended model for overall welfare assessment of caged Atlantic salmon, based on a review of selected welfare indicators and intended for fish health professionals. Rev Aquac 6:162–179. https://doi.org/10.1111/raq.12039

    Article  Google Scholar 

  • Railo E, Nikinmaa M, Soivio A (1985) Effects of sampling on blood parameters in the rainbow trout, Salmo gairdneri Richardson. J Fish Biol 26:725–732

    Article  Google Scholar 

  • Reinitz GL, Rix J (1977) Effect on tricaine methanesulfonate (MS-222) on hematocrit values in rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 56:115–116

    Article  CAS  Google Scholar 

  • Schmitt CJ, Whyte JJ, Brumbaugh WG, Tillitt DE (2005) Biochemical effects of lead, zinc, and cadmium from mining on fish in the tri-states district of northeastern Oklahoma, USA. Environ Toxicol Chem 24:1483–1495. https://doi.org/10.1897/04-332R.1

    Article  CAS  PubMed  Google Scholar 

  • Soivio A, Nyholm K, Huhti M (1977) Effects of anaesthesia with MS 222, neutralized MS 222 and benzocaine on the blood constituents of rainbow trout, Salmo gairdneri. J Fish Biol 10:91–101

    Article  CAS  Google Scholar 

  • Standard A (2000) NCCLS document H15-A3 NCCLS, Wayne, PA

  • Steinmetz HW, Vogt R, Kastner S, Riond B, Hatt JM (2007) Evaluation of the i-STAT portable clinical analyzer in chickens (Gallus gallus). J Vet Diagn Investig 19:382–388

    Article  Google Scholar 

  • Stien LH, Bracke MBM, Folkedal O, Nilsson J, Oppedal F, Torgersen T, Kittilsen S, Midtlyng PJ, Vindas MA, Øverli Ø, Kristiansen TS (2013) Salmon welfare index model (SWIM 1.0): a semantic model for overall welfare assessment of caged Atlantic salmon: review of the selected welfare indicators and model presentation. Rev Aquac 5:33–57. https://doi.org/10.1111/j.1753-5131.2012.01083.x

    Article  Google Scholar 

  • Tucker VA (1967) Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 23:410–414

    Article  CAS  Google Scholar 

  • Vanzetti G (1966) An azide-methemoglobin method for hemoglobin determination in blood. J Lab Clin Med 67:116–126

    CAS  PubMed  Google Scholar 

  • Verwaerde P, Malet C, Lagente M, De la Farge F, Braun JP (2002) The accuracy of the i-STAT portable analyser for measuring blood gases and pH in whole-blood samples from dogs. Res Vet Sci 73:71–75. https://doi.org/10.1016/s0034-5288(02)00065-6

    Article  CAS  PubMed  Google Scholar 

  • Wells RMG, Pankhurst NW (1999) Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein as stress indicators in fish. J World Aquacult Soc 30:276–284. https://doi.org/10.1111/j.1749-7345.1999.tb00876.x

    Article  Google Scholar 

  • Whitehead RD, Zhang M, Sternberg MR, Schleicher RL, Drammeh B, Mapango C, Pfeiffer CM (2017) Effects of preanalytical factors on hemoglobin measurement: a comparison of two HemoCue® point-of-care analyzers. Clin Biochem 50:513–520. https://doi.org/10.1016/j.clinbiochem.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahl IH, Kiessling A, Samuelsen OB, Olsen RE (2010) Anesthesia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol Biochem 36:719–730. https://doi.org/10.1007/s10695-009-9346-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution of Prof. Ole Brix during the planning of the research experiments and discussing the results. The authors want to thank Dr. Peter Delchev for his language contribution provided to the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav S. Borissov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borissov, R.S., Espeland, S. & Iversen, M.H. Evaluation of the i-STAT (portable clinical analyser) for measuring haematological parameters in Atlantic cod (Gadus morhua) at different CO2 and temperature conditions. Fish Physiol Biochem 45, 1551–1562 (2019). https://doi.org/10.1007/s10695-019-00638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00638-1

Keywords

Navigation