Skip to main content
Log in

Establishment and characterization of a fibroblast-like cell line from the muscle of turbot (Scophthalmus maximus L.)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

A continuous fibroblast-like cell line, TMF (turbot muscle fibroblasts), was established from juvenile turbot Scophthalmus maximus muscle with the method of trypsin digestion. It has been subcultured more than 60 passages for over 150 days. The TMF cells were cultured in L-15 medium supplemented with HEPES, fetal bovine serum (FBS), GlutaMAX, and basic fibroblast growth factor (bFGF). The optimal temperature for TMF culture was 24 °C. TMF cells were predominantly composed of fibroblastic-like cells, and the transcription factor 4 (TCF-4) was highly expressed in TMF cells. Chromosome analysis revealed that it had a diploid chromosome number of 2n = 44. The transfection efficiency achieved 54.95 ± 6.59%, and the cell mortality rate was about 8.70% when transfected with the nucleofection method. Meanwhile, the TMF cells showed a sensitive response to amino acid levels and activation target of rapamycin (TOR) signaling pathway. These results indicate that TMF was a potential tool to explore the signal transduction of teleost in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed VPI, Babu VS, Chandra V et al (2009) A new fibroblastic-like cell line from heart muscle of the Indian major carp (Catla catla): development and characterization. Aquaculture 293:180–186

    Article  CAS  Google Scholar 

  • Ahmed VPI, Chandra V, Parameswaran V et al (2010) A new epithelial-like cell line from eye muscle of catla Catla catla (Hamilton): development and characterization. J Fish Biol 72:2026–2038

    Article  CAS  Google Scholar 

  • Bian F, Jiang H, Man M, Mai K, Zhou H, Xu W, He G (2017) Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.). Am J Physiol Endocrinol Metab 312:37–47

    Article  Google Scholar 

  • Bœuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C-Toxicol Pharmacol 130:411–423

    Article  PubMed  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LEJ (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    Article  CAS  PubMed  Google Scholar 

  • Chantranupong L, Wolfson R, Sabatini D (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Ren GC, Sha ZX, Hong Y (2005) Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture 249:63–68

    Article  CAS  Google Scholar 

  • Conde-Sieira M, Soengas JL (2016) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 10:603

    PubMed  Google Scholar 

  • Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT (2011) P62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44:134–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eusebio PS, Coloso RM, Mamauag REP, Rimmer MA, Mcbride S, Williams KC (2004) Apparent digestibility of selected feed ingredients in diets for grouper (Epinephelus coioides) juveniles. Aquac Res 35:1261–1269

    Article  CAS  Google Scholar 

  • Falco A, Encinas P, Carbajosa S, Cuesta A, Chaves-Pozo E, Tafalla C, Estepa A, Coll JM (2009) Transfection improvements of fish cell lines by using deacylated polyethylenimine of selected molecular weights. Fish Shellfish Immunol 26:559–566

    Article  CAS  PubMed  Google Scholar 

  • Fan TJ, Ren BX, Geng XF, Yu QT, Wang LY (2010) Establishment of a turbot fin cell line and its susceptibility to turbot reddish body iridovirus. Cytotechnology 62:217–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Puentes C, Novoa B, Figueras A (1993) Initiation of a cell line from turbot (Scophthalmus maximus L.). In Vitro Cell Dev Biol-Anim 29:899–900

  • Fuchs VI, Schmidt J, Slater MJ, Zentek J, Buck BH, Steinhagen D (2015) The effect of supplementation with polysaccharides, nucleotides, acidifiers and bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 437:243–251

    Article  CAS  Google Scholar 

  • Gravell M, Malsberger RG (2010) A permanent cell line from the fathead minnow (Pimephales promelas). Annnyacadsci 126:555–565

    Article  Google Scholar 

  • Gregory MK, King HW, Bain PA, Gibson RA, Tocher DR, Schuller KA (2011) Development of a fish cell culture model to investigate the impact of fish oil replacement on lipid peroxidation. Lipids 46:753–764

    Article  CAS  PubMed  Google Scholar 

  • Gregory P (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854

    Article  CAS  Google Scholar 

  • Kristin S (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  • Kumar A, Singh N, Goswami M, Srivastava JK, Mishra AK, Lakra WS (2016) Establishment and characterization of a new muscle cell line of zebrafish (Danio rerio) as a model for gene expression studies. Anim Biotechnol 27:166–173

    Article  CAS  PubMed  Google Scholar 

  • Lakra WS, Bhonde RR, Sivakumar N, Ayyappan S (2006) A new fibroblast like cell line from the fry of golden mahseer Tor putitora (Ham). Aquaculture 253:238–243

    Article  Google Scholar 

  • Lakra WS, Joy KP (2011) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37:1–20

    Article  CAS  PubMed  Google Scholar 

  • Lansard M, Panserat S, Plagnesjuan E, Seiliez I, Skibacassy S (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39:801–810

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Cho SH, Park SU, Kim KD, Lee SM (2015) Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquac Nutr 9:283–286

    Article  Google Scholar 

  • Li Y, Huard J (2002) Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 161:895–907

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, He G, Wang Q, Mai K, Wei X, Zhou H (2014) Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot (Scophthalmus maximus L.). Aquaculture 433:476–480

    Article  CAS  Google Scholar 

  • Middlebrooks BL, Ellender RD, Wharton JH (1979) Fish cell culture: a new cell line from Cynoscion nebulosus. Vitro 15:109–111

    Article  Google Scholar 

  • Minghetti M, Leaver MJ, Tocher DR (2011) Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1. Biochim Biophys Acta 1811:194–202

    Article  CAS  PubMed  Google Scholar 

  • Nichols WW, Levan A, Coriell LL, Goldner H, Ahlström CG (1964) Chromosome abnormalities in vitro in human leukocytes associated with Schmidt-Ruppin Rous sarcoma virus. Science 146:248–250

    Article  CAS  PubMed  Google Scholar 

  • Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35:83–108

    Article  CAS  PubMed  Google Scholar 

  • Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218

    Article  CAS  PubMed  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiøtz BL, Rosado EG, Baekkevold ES, Lukacs M, Mjaaland S, Sindre H, Grimholt U, Gjøen T (2011) Enhanced transfection of cell lines from Atlantic salmon through nucoleofection and antibiotic selection. BMC Res Notes 4:136–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnell S, Bols NC, Barata C, Porte C (2009) Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. Aquat Toxicol 93:244–252

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Kumar R, Kumari P, Mitra A (2013) An alternate protocol for establishment of primary caprine fetal myoblast cell culture: an in vitro model for muscle growth study. In Vitro Cell Dev Biol-Anim 49:598–598

    Article  Google Scholar 

  • Song LC, Guo CR, Zhen XS, Cheng YS (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 60:241–246

    Article  Google Scholar 

  • Tafalla C, Novoa B (2001) Respiratory burst of turbot (Scophthalmus maximus) macrophages in response to experimental infection with viral haemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol 11:727–734

    Article  CAS  PubMed  Google Scholar 

  • Thomopoulos S, Harwood FL, Silva MJ, Amiel D, Gelberman RH (2005) Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg-Am Vol 30:441–447

    Article  Google Scholar 

  • Tocher DR, Carr J, Sargent JR (1989) Polyunsaturated fatty acid metabolism in fish cells: differential metabolism of (n-3) and (n-6) series acids by cultured cells originating from a freshwater teleost fish and from a marine teleost fish. Comp Biochem Physiol B Comp Biochem 94:367–374

    Article  CAS  Google Scholar 

  • Tong SL, Li H, Miao HZ (1997) The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture 156:327–333

    Article  Google Scholar 

  • Trevino JG, George SA, Hughes SJ, Chellappan SP (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Phys 295:329–335

    Google Scholar 

  • Wang L, Zhou H, He R, Wei X, Mai K, He G (2016a) Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture 464:87–94

    Article  CAS  Google Scholar 

  • Wang N, Wang XL, Sha ZX, Tian YS, Chen SL (2010a) Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus). Fish Physiol Biochem 36:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, He G, Mai K, Xu W, Zhou H, Wang X, Mei L (2016b) Chronic rapamycin treatment on the nutrient utilization and metabolism of juvenile turbot (Psetta maxima). Sci Rep 6:28068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Wang N, Sha ZX, Chen SL (2010b) Establishment, characterization of a new cell line from heart of half smooth tongue sole (Cynoglossus semilaevis). Fish Physiol Biochem 36:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Wood CA, Padmore L, Radda GK (1993) The effect of phosphatidic acid on the proliferation of Swiss 3T3 cells. J Cell Biochem 21:369S

    CAS  Google Scholar 

  • Xu D, He G, Mai K, Zhou H, Song F (2016) Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L). Br J Nutr 115:379–388

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Shima T, Furuita H, Suzuki N, Sanchezvazquez FJ, Tabata M (2015) Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout. Oncorhynchus mykiss (Walbaum) Aquac Res 32:83–91

  • Yang CG, Liu SS, Sun B, Wang XL, Wang N, Chen SL (2013) Iron-metabolic function and potential antibacterial role of Hepcidin and its correlated genes (ferroportin 1 and transferrin receptor) in turbot (Scophthalmus maximus). Fish Shellfish Immunol 34:744–755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key R&D Program of China (2018YFD0900400), National Natural Scientific Foundation of China grant (31702355 and 31772860), Aoshan Talents Cultivation Program supported by Qingdao National Laboratory for Marine Science and Technology (2017ASTCP-OS12), Fundamental Research Funds for the Central Universities (201822017) to GH, and China Agriculture Research System (CARS-47-G10) to KM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhou, H., Gao, Z. et al. Establishment and characterization of a fibroblast-like cell line from the muscle of turbot (Scophthalmus maximus L.). Fish Physiol Biochem 45, 1129–1139 (2019). https://doi.org/10.1007/s10695-019-00628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00628-3

Keywords

Navigation