Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets

Abstract

The present work focuses on the use of defatted biomass of the microalga Nannochloropsis sp. from the biodiesel industry, as a partial substitute of fish meal (FM) in diets for European sea bass. The effects of increasing inclusion levels of microalgal meal on growth performance, body composition, nutrient utilization, gut morphology, and innate immunity were evaluated after 93 days. A reference alga-free diet was the control (CTRL) diet, and the three experimental diets contained 5 (MA5), 10 (MA10), and 15% (MA15) of the microalgal meal. The microalga-rich diets were supplemented with DL-methionine to assure sea bass dietary requirement. Overall, nutrient apparent digestibilities (ADCs) of the diets were not altered by the microalgal inclusion, but energy ADC was highest in fish fed the CTRL diet (90% vs 88%). At the end of the trial, fish growth performance was similar among dietary treatments (DGI of 1.0), but fish fed MA10 had a significantly higher feed conversion ratio than those fed CTRL and MA5. Final whole body composition and nutrient gain of fish fed the different diets were similar. No significant differences were detected in gut morphology among treatments. Innate immune parameters (lysozyme, alternative complement pathway—ACH50, and peroxidase) were examined, and ACH50 of the fish fed MA15 was significantly lower than those fed MA10, suggesting a dose-dependent stimulation of the innate immune response. The present results indicate that defatted microalgal meal can replace fishmeal in European sea bass diets—at inclusion levels of up to 15%—contributing to a circular economy approach.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Afnor V (1992) Préparations de viande et produits à base de viande—Détermination de la teneur en phosphore total. NF V04–406

  2. Atalah E, Cruz CMH, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270(1–4):178–185. https://doi.org/10.1016/j.aquaculture.2007.04.009

    CAS  Article  Google Scholar 

  3. Bawdy T, Ibrahim E, Zeinhom M (2008) Partial replacement of fish meal with dried microalga (Chlorella spp and Scenedesmus spp) in Nile tilapia (Oreochromis niloticus) diets. 8th International Symposium on Tilapia in Aquaculture:801–811

  4. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002

    CAS  Article  PubMed  Google Scholar 

  5. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2014) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90. https://doi.org/10.3389/fbioe.2014.00090

    Article  PubMed  Google Scholar 

  6. Bolin DW, King RP, Klosterman EW (1952) A simplified method for the determination of chromic oxide (Cr2O3) when used as an index substance. American Association for the Advancement of Science. Science 116:634–635

    CAS  Article  Google Scholar 

  7. Brown MR, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255

    CAS  Article  Google Scholar 

  8. Cabral EM, Bacelar M, Batista S, Castro-Cunha M, Ozório ROA, Valente LMP (2011) Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Solea senegalensis) juveniles. Aquaculture 322–323(0):74–81. https://doi.org/10.1016/j.aquaculture.2011.09.023

    CAS  Article  Google Scholar 

  9. Campos I, Matos E, Marques A, Valente LMP (2017) Hydrolyzed feather meal as a partial fishmeal replacement in diets for European seabass (Dicentrarchus labrax) juveniles. Aquaculture 476:152–159. https://doi.org/10.1016/j.aquaculture.2017.04.024

    CAS  Article  Google Scholar 

  10. Cardinaletti G, Messina M, Bruno M, Tulli F, Poli BM, Giorgi G, Chini-Zittelli G, Tredici M, Tibaldi E (2018) Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 485:173–182. https://doi.org/10.1016/j.aquaculture.2017.11.049

    CAS  Article  Google Scholar 

  11. Cerezuela R, Guardiola FA, Meseguer J, Esteban MÁ (2012) Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiol Biochem 38(6):1729–1739. https://doi.org/10.1007/s10695-012-9670-9

    CAS  Article  PubMed  Google Scholar 

  12. Costas B, Conceição LEC, Dias J, Novoa B, Figueras A, Afonso A (2011) Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol 31(6):838–847. https://doi.org/10.1016/j.fsi.2011.07.024

    CAS  Article  PubMed  Google Scholar 

  13. da Silva JG, Oliva-Teles A (1998) Apparent digestibility coefficients of feedstuffs in seabass (Dicentrarchus labrax) juveniles. Aquat Living Resour 11(3):187–191. https://doi.org/10.1016/S0990-7440(98)80115-0

    Article  Google Scholar 

  14. Dallaire V, Lessard P, Vandenberg G, de la Noüe J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98(7):1433–1439. https://doi.org/10.1016/j.biortech.2006.05.043

    CAS  Article  PubMed  Google Scholar 

  15. Dias J, Alvarez MJ, Arzel J, Corraze G, Diez A, Bautista JM, Kaushik SJ (2005) Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A: Molec Integrat Physiol 142(1):19–31

    CAS  Article  Google Scholar 

  16. Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, Calduch-Giner JA, Fuentes J, Karalazos V, Ortiz Á, Øverland M, Sitjà-Bobadilla A, Pérez-Sánchez J (2016) Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One 11(11):e0166564. https://doi.org/10.1371/journal.pone.0166564

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Fournier V, Gouillou-Coustans MF, Métailler R, Vachot C, Guedes MJ, Tulli F, Oliva-Teles A, Tibaldit E, Kaushik SJ (2002) Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. Br J Nutr 87(05):459–469. https://doi.org/10.1079/BJN2002564

    CAS  Article  PubMed  Google Scholar 

  18. Gbadamosi OK, Lupatsch I (2018) Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal Res 33:48–54. https://doi.org/10.1016/j.algal.2018.04.030

    Article  Google Scholar 

  19. Gong Y, Guterres HADS, Huntley M, Sørensen M, Kiron V (2018) Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquac Nutr 24(1):56–64. https://doi.org/10.1111/anu.12533

    CAS  Article  Google Scholar 

  20. Hardie LJ, Fletcher TC, Secombes CJ (1990) The effect of vitamin E on the immune response of the Atlantic salmon (Salmo salar L.). Aquaculture 87(1):1–13. https://doi.org/10.1016/0044-8486(90)90206-3

    CAS  Article  Google Scholar 

  21. Hussein EE-S, Dabrowski K, El-Saidy DMSD, Lee B-J (2013) Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten) protein with algae protein. Aquac Res 44(6):937–949. https://doi.org/10.1111/j.1365-2109.2012.03100.x

    CAS  Article  Google Scholar 

  22. Hutchinson TH, Manning MJ (1996) Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limandaL.) sampled from Lyme Bay, U.K. Fish Shellfish Immunol 6(7):473–482. https://doi.org/10.1006/fsim.1996.0045

    Article  Google Scholar 

  23. Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354–355:50–55. https://doi.org/10.1016/j.aquaculture.2012.04.028

    CAS  Article  Google Scholar 

  24. Kaushik S (2002) European sea bass, Dicentrachus labrax. In: Webster C, Lim C (eds) Nutrient requirements and feeding of finfish for aquaculture, vol 28–39. CABI Publishers, London

    Google Scholar 

  25. Kiron V, Phromkunthong W, Huntley M, Archibald I, De Scheemaker G (2012) Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18(5):521–531. https://doi.org/10.1111/j.1365-2095.2011.00923.x

    CAS  Article  Google Scholar 

  26. Kiron V, Sørensen M, Huntley M, Vasanth GK, Gong Y, Dahle D, Palihawadana AM (2016) Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon. Front Mar Sci 3:67. https://doi.org/10.3389/fmars.2016.00067

    Article  Google Scholar 

  27. Lech GP, Reigh RC (2012) Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets. PLoS One 7(4):e34981. https://doi.org/10.1371/journal.pone.0034981

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Lum KK, Kim J, Lei XG (2013) Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechnol 4(1):1–7. https://doi.org/10.1186/2049-1891-4-53

    CAS  Article  Google Scholar 

  29. Maynard LA, Loosli JK, Hintz HF, Warner RG (1979) Animal nutrition. McGraw-Hill, New York

    Google Scholar 

  30. Montero D, Tort L, Izquierdo MS, Robaina L, Vergara JM (1998) Depletion of serum alternative complement pathway activity in gilthead seabream caused by α-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiol Biochem 18(4):399–407. https://doi.org/10.1023/a:1007734720630

    CAS  Article  Google Scholar 

  31. Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12(3):527–534. https://doi.org/10.1023/a:1008106304417

    Article  Google Scholar 

  32. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106(36):15103–15110. https://doi.org/10.1073/pnas.0905235106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. NRC (2011) Nutrient requirements of fish and shrimp. The National Academy Press, Washington

    Google Scholar 

  34. Patterson D, Gatlin DM (2013) Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 416-417:92–98. https://doi.org/10.1016/j.aquaculture.2013.08.033

    CAS  Article  Google Scholar 

  35. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91(3):e92–e97. https://doi.org/10.1016/j.rvsc.2011.02.014

    CAS  Article  PubMed  Google Scholar 

  36. Popp J, Harangi-Rakos M, Gabnai Z, Balogh P, Antal G, Bai A (2016) Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules (Basel, Switzerland) 21(3):285. https://doi.org/10.3390/molecules21030285

    CAS  Article  Google Scholar 

  37. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, Olsen RE, Dimitroglou A, Foey A, Davies S, Owen M, Lauzon HL, Martinsen LL, De Schryver P, Bossier P, Sperstad S, Merrifield DL (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22(2):219–282. https://doi.org/10.1111/anu.12346

    CAS  Article  Google Scholar 

  38. Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernández-Palacios H (1995) Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130(2):219–233. https://doi.org/10.1016/0044-8486(94)00225-D

    Article  Google Scholar 

  39. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13(11):1450–1464. https://doi.org/10.1128/ec.00183-14

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30(1):197–213. https://doi.org/10.1007/s10811-017-1234-z

    Article  Google Scholar 

  41. Skrede A, Mydland LT, Ahlstrøm Ø, Reitan KI, Gislerød HR, Øverland M (2011) Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci 20(1):131–142. https://doi.org/10.22358/jafs/66164/2011

    Article  Google Scholar 

  42. Sørensen M, Gong Y, Bjarnason F, Vasanth GK, Dahle D, Huntley M, Kiron V (2017) Nannochloropsis Oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PLoS One 12(7):e0179907. https://doi.org/10.1371/journal.pone.0179907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Sunyer JO, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45(3):333–345. https://doi.org/10.1016/0165-2427(94)05430-Z

    CAS  Article  PubMed  Google Scholar 

  44. Tibaldi E, Chini Zittelli G, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015) Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 440:60–68. https://doi.org/10.1016/j.aquaculture.2015.02.002

    CAS  Article  Google Scholar 

  45. Torrecillas S, Montero D, Caballero MJ, Pittman KA, Custódio M, Campo A, Sweetman J, Izquierdo M (2015) Dietary Mannan oligosaccharides: counteracting the side effects of soybean meal oil inclusion on European sea bass (Dicentrarchus labrax) gut health and skin mucosa mucus production? Front Immunol 6:397. https://doi.org/10.3389/fimmu.2015.00397

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Tulli F, Chini Zittelli G, Giorgi G, Poli BM, Tibaldi E, Tredici MR (2012) Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. J Aquat Food Prod T 21(3):188–197. https://doi.org/10.1080/10498850.2012.664803

    Article  Google Scholar 

  47. Valente LMP, Gouveia A, Rema P, Matos J, Gomes EF, Pinto IS (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252(1):85–91

    Article  Google Scholar 

  48. Vallejos-Vidal E, Reyes-López F, Teles M, MacKenzie S (2016) The response of fish to immunostimulant diets. Fish Shellfish Immunol 56(Supplement C):34–69. https://doi.org/10.1016/j.fsi.2016.06.028

    CAS  Article  PubMed  Google Scholar 

  49. Vizcaíno AJ, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF, Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431:34–43. https://doi.org/10.1016/j.aquaculture.2014.05.010

    CAS  Article  Google Scholar 

  50. Walker AB, Berlinsky DL (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquac 73(1):76–83. https://doi.org/10.1080/15222055.2010.549030

    Article  Google Scholar 

  51. Wang Y-R, Wang L, Zhang C-X, Song K (2017) Effects of substituting fishmeal with soybean meal on growth performance and intestinal morphology in orange-spotted grouper (Epinephelus coioides). Aquac Rep 5(Supplement C):52–57. https://doi.org/10.1016/j.aqrep.2016.12.005

    Article  Google Scholar 

  52. Yu W, Wen G, Lin H, Yang Y, Huang X, Zhou C, Zhang Z, Duan Y, Huang Z, Li T (2018) Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802). Fish Shellfish Immunol 74:649–655. https://doi.org/10.1016/j.fsi.2018.01.024

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cornell Marine Algae Biofuels Consortium (AlgaeConsortium.com; funded by US Department of Energy) for providing the algal biomass for the study.

Declaration of authors’ contributions to the work

All authors declare that they have contributed to the conception and design of the study or acquisition of data, and analysis including interpretation of data, drafting of the article, and finally approval of the submitted version.

Funding

This study was partially supported by MARINALGAE4aqua “Improving bio-utilisation of marine algae as sustainable feed ingredients to increase efficiency and quality of aquaculture production” ERA-NET COFASP/004/2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luísa Maria Pinheiro Valente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of informed consent and human/animal rights

The authors wish to declare that there were no conflicts, informed consent, and human or animal rights applicable. Fish were handled according to the Guidelines of the European Union (Directive 2010/63/UE) for the use of laboratory animals.

Declaration of authors’ agreement to authorship and submission of the manuscript for peer review

All authors agree to authorship and submission of this manuscript for peer review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valente, L.M.P., Custódio, M., Batista, S. et al. Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets. Fish Physiol Biochem 45, 1067–1081 (2019). https://doi.org/10.1007/s10695-019-00621-w

Download citation

Keywords

  • Aquafeeds
  • Biofuel co-products
  • Circular economy
  • Defatted microalgae
  • Dicentrarchus labrax
  • Feedstock production
  • Sustainable aquaculture