Skip to main content
Log in

Fish response to hypoxia stress: growth, physiological, and immunological biomarkers

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Water quality encompasses the water physical, biological, and chemical parameters. It generally affects the fish growth and welfare. Thus, the success of a commercial aquaculture project depends on supplying the optimum water quality for prompt fish growth at the minimum cost of resources. Although the aquaculture environment is a complicated system, depending on various water quality variables, only less of them have a critical role. One of these vital parameters is dissolved oxygen (DO) level, which requires continuous oversight in aquaculture systems. In addition, the processes of natural stream refinement require suitable DO levels in order to extend for aerobic life forms. The depletion of DO concentration (called hypoxia) in pond water causes great stress on fish where DO levels that remain below 1–2 mg/L for a few hours can adversely affect fish growth resulting in fish death. Furthermore, hypoxia has substantial effects on fish physiological and immune responses, making them more susceptible to diseases. Therefore, to avoid disease outbreak in modern aquaculture production systems where fish are intensified and more crowded, increasing attention should be taken into account on DO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Tawwab M (2016) Effect of feed availability on susceptibility of Nile tilapia, Oreochromis niloticus (L.) to environmental zinc toxicity: growth performance, biochemical response, and zinc bioaccumulation. Aquaculture 464:309–315

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Wafeek M (2017) Fluctuations in water temperature affected waterborne cadmium toxicity: hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 477:106–111

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Hagras AE, Elbaghdady HM, Monier MN (2014) Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia, Oreochromis niloticus. J Appl Aquac 26:340–355

    Article  Google Scholar 

  • Abdel-Tawwab M, Hagras AE, Elbaghdady HM, Monier MN (2015) Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquac Int 23:1261–1274

    Article  CAS  Google Scholar 

  • Aboagye DL, Allen PJ (2018) Effects of acute and chronic hypoxia on acid-base regulation, hematology, ion, and osmoregulation of juvenile American paddlefish. J Comp Physiol B 188(1):77–88

    Article  CAS  PubMed  Google Scholar 

  • Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 237:167–178

    Article  CAS  Google Scholar 

  • Affonso EG, Polez VL, Correa CF, Mazon AF, Araujo MR, Moraes G, Rantin FT (2002) Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp Biochem Physiol (C) 133:375–382

    CAS  Google Scholar 

  • Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101–109

    Article  CAS  PubMed  Google Scholar 

  • Al-Salahy MB (2006) Studies on the effect of hypoxic water on lipid peroxidation, DNA fragmentation and haematological responses in the catfish, Clarias gariepinus. J Egypt Ger Soc Zool 49:203–218

    Google Scholar 

  • Araújo-Luna R, Ribeiro L, Bergheim A, Pousão-Ferreira P (2018) The impact of different rearing condition on gilthead seabream welfare: dissolved oxygen levels and stocking densities. Aquac Res 49:3845–3855

    Article  CAS  Google Scholar 

  • Arend KK, Beletsky D, DePinto JV, Ludsin SA, Roberts JJ, Rucinski DK, Scavia D, Schwab DJ, Höök TO (2011) Seasonal and interannual effects of hypoxia on fish habitat quality in Central Lake Erie. Freshw Biol 56(2):366–383

    Article  Google Scholar 

  • Barcellos LJG, Kreutz LC, de Souza C, Rodrigues LB, Fioreze I, Quevedo RM, Cericato L, Soso AB, Fagundes M, Conrad J, Lacerda LA, Terra S (2004) Hematological changes in jundià (Rhamida quelen Quoy and Gaimard Pimelodidae) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture 237:229–236

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 10:3–26

    Article  Google Scholar 

  • Bartoskova M, Dobsikova R, Stancova V, Zivna D, Blahova J, Marsalek P, Zelnickova L, Bartos M, Di Tocco FC, Faggio C (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol Lett 34:102–108

    CAS  Google Scholar 

  • Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Sawant PB, Dasgupta S, Chadha NK, Sawant BT, Pal AK (2017) Diel cyclic hypoxia alters plasma lipid dynamics and impairs reproduction in goldfish (Carassius auratus). Fish Physiol Biochem 43:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Bernier NJ, Craig PM (2005) CRF-related peptides contribute to stress response and regulation of appetite in hypoxic rainbow trout. Am J Physiol Regul Integr Comp Physiol 289:982–990

    Article  CAS  Google Scholar 

  • Bernier NJ, Gorissen M, Flik G (2012) Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. J Exp Biol 215:2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Phys (C) 130:411–423

    CAS  Google Scholar 

  • Boleza KA, Burnett LE, Burnett KG (2001) Hypercapnic hypoxia compromises bactericidal activity of fish anterior kidney cells against opportunistic environmental pathogens. Fish Shellfish Immunol 11:593–610

    Article  CAS  PubMed  Google Scholar 

  • Booth JH (1978) The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J Exp Biol 73:119–129

    Google Scholar 

  • Bowyer JN, Booth MA, Qin JG, D’Antignana T, Thomson MJS, Stone DAJ (2014) Temperature and dissolved oxygen influence growth and digestive enzyme activities of yellowtail kingfish Seriola lalandi (Valenciennes, 1833). Aquac Res 45:2010–2020

    Article  CAS  Google Scholar 

  • Brauner CJ (1999) The effect of diet and short duration hyperoxia exposure on seawater transfer in coho salmon smolts (Oncorhynchus kishutch). Aquaculture 177:257–265

    Article  CAS  Google Scholar 

  • Brauner CJ, Seidelin M, Madsen SS, Jensen FB (2000) Effect of freshwater hyperoxia and hypercapnia and their influences on subsequent seawater transfer in Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 57:2054–2064

    Article  Google Scholar 

  • Breitburg DL (2002) Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25:767–781

    Article  Google Scholar 

  • Brett JR (1979) Environmental factors and growth. In: Fish physiology, vol. VIII. In: Hoar WS, Randall DJ, Brett JR (eds) Academic Press, New York, p 599–675

  • Brett JR, Blackburn JM (1981) Oxygen requirements for growth of young coho (Oncorhynchus kisutch) and sockeye (O. nerka) salmon at 15 °C. Can J Fish Aquat Sci 38:399–404

    Article  Google Scholar 

  • Buentello JA, Gatlin DM III, Neill WH (2000) Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture 182:339–352

    Article  Google Scholar 

  • Bunch EC, Bejerano I (1997) The effect of environmental factors on the susceptibility of hybrid tilapia Oreochromis niloticus x O. aures to streptococcosis. Isr J Aquacult 49:67–76

    Google Scholar 

  • Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000

    Article  CAS  Google Scholar 

  • Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol B 162:131–143

    Article  CAS  Google Scholar 

  • Cadiz L, Zambonino-Infante JL, Quazuguel P, Madec L, Le Delliou H, Mazurais D (2017) Metabolic response to hypoxia in European sea bass (Dicentrarchus labrax) displays developmental plasticity. Comp Biochem Physiol (B) 215:1–9

    Article  CAS  Google Scholar 

  • Caldwell CA, Hinshaw J (1994) Physiological and haematological responses in rainbow trout subjected to supplemental dissolved oxygen in fish culture. Aquaculture 126:183–193

    Article  Google Scholar 

  • Campbell NA (1990) Biology. Circulation and gas exchange. Chapter 38. Benjamin/Cummings Publishing Company, Redwood City, pp 683–705

    Google Scholar 

  • Cecchini S, Caputo AR (2003) Acid-base balance in sea bass (Dicentrarchus labrax, L.) in relation to water oxygen concentration. Aquac Res 34:1069–1073

    Article  Google Scholar 

  • Cecchini S, Saroglia M (2002) Antibody response in sea bass Dicentrarchus labrax (L.) in relation to water temperature and oxygenation. Aquac Res 33:607–613

    Article  Google Scholar 

  • Chabot D, Claireaux G (2008) Environmental hypoxia as a metabolic constraint on fish: the case of Atlantic cod, Gadus morhua. Mar Poll Bull 57:287–294

    Article  CAS  Google Scholar 

  • Chen JM, Cutler C, Jacques C, Boeuf G, Denamur E, Lecointre G, Mercier B, Cramb G, Ferec C (2001) A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and diseases model. Mol Biol Evol 18:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G (2004) Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquac Res 35:1434–1440

    Article  CAS  Google Scholar 

  • Cook DG, Herbert NA (2012) The physiological and behavioural response of juvenile kingfish (Seriola lalandi) differs between escapable and inescapable progressive hypoxia. J Exp Mar Biol Ecol 413:138–144

    Article  Google Scholar 

  • Cooper RU, Clough LM, Farwell MA, West TL (2002) Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J Exp Mar Biol Ecol 279:1–20

    Article  CAS  Google Scholar 

  • Cossins AR, Crawford DL (2005) Fish as models for environmental genomics. Nat Rev Genet 6:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cuesta A, Esteban MA, Meseguer J (2003) Effects of different stressor agents on gilthead seabream natural cytotoxic activity. Fish Shellfish Immunol 15:433–441

    Article  CAS  PubMed  Google Scholar 

  • Delaney MA, Klesius PH (2004) Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus (L.). Aquaculture 236:633–644

    Article  CAS  Google Scholar 

  • Di Marco P, Priori A, Finoia MG, Massari A, Mandich A, Marino G (2008) Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture 275:319–328

    Article  Google Scholar 

  • Domenici P, Steffensen JF, Marras S (2017) The effect of hypoxia on fish schooling. Philos Trans Soc B 372:236–249

    Article  CAS  Google Scholar 

  • Douxfils J, Deprez M, Mandiki SNM, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P (2012) Physiologic al and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication- clues to physiological acclimation and humoral immune modulations. Fish Shellfish Immunol 33:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Dong X, Zhang X, Miao Z (2011) Effects of dissolved oxygen concentration and stocking density on the growth, energy budget and body composition of juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac Res 42:407–416

    Article  CAS  Google Scholar 

  • Duthie GG, Hughes GM (1987) The effect of reduced gill area and hyperoxia on oxygen consumption and swimming speed of rainbow trout. J Exp Biol 127:349–354

    Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  • Evans JJ, Shoemaker CA, Klesius PH (2003) Effects of sublethal dissolved oxygen stress on blood glucose and susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. J Aquat An Health 15:202–208

    Article  Google Scholar 

  • Faggio C, Pagano M, Alampi R, Vazzana I, Felice MR (2016) Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat Toxicol 180:258265

    Article  CAS  Google Scholar 

  • Faggio C, Tsarpali V, Dailianis S (2018) Mussel digestive gland as a model for assessing xenobiotics: an overview. Sci Total Environ 613:220–229

    Article  CAS  Google Scholar 

  • Fazio F, Faggio C, Marafioti S, Torre A, Sanfilippo M, Piccione G (2012) Comparative study of haematological profile on Gobius niger in two different habitat sites: Faro Lake and Tyrrhenian Sea. Cah Biol Mar 53:213–219

    Google Scholar 

  • Fitzgibbon QP, Strawbridge A, Seymour RS (2007) Metabolic scope, swimming performance and the effects of hypoxia in the mulloway, Argyrosomus japonicus (Pisces: Scianeidae). Aquaculture 270:358–368

    Article  Google Scholar 

  • Foss A, Evensen TH, Oiestad V (2002) Effects of hypoxia and hyperoxia on growth and food conversion efficiency in the spotted wolfish Anarhichas minor (Olafsen). Aquac Res 33:437–444

    Article  Google Scholar 

  • Fukuda Y, Maita M, Satoh K, Okamoto N (1997) Influence of dissolved oxygen concentration on the mortality of yellowtail experimentally infected with Enterococcus seriolicida. Fish Pathol 32:129–130

    Article  Google Scholar 

  • Gallage S, Katagiri T, Endo M, Futami K, Endo M, Maita M (2016) Influence of moderate hypoxia on vaccine efficacy against Vibrio anguillarum in Oreochromis niloticus (Nile tilapia). Fish Shellfish Immunol 51:271–281

    Article  CAS  PubMed  Google Scholar 

  • Gallage S, Katagiri T, Endo M, Maita M (2017) Comprehensive evaluation of immunomodulation by moderate hypoxia in S. agalactiae vaccinated Nile tilapia. Fish Shellfish Immunol 66:445–454

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Liu YJ, Tian LX, Yue YR, Yang HJ, Liu FJ, Chen YJ, Liang GY (2013) Effect of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Aquacult Nut 19:860–869

    Article  CAS  Google Scholar 

  • Genz J, Jyde MB, Svendsen JC, Steffensen JF, Ramløv H (2013) Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fishes. Comp Biochem Physiol (A) 165:54–60

    Article  CAS  Google Scholar 

  • Glass ML, Andersen NA, Kruhoffer M, Williams EM, Heisler N (1990) Combined effects of environmental PO2 and temperature on ventilation and blood gases in the carp Cyprinus carpio L. J Exp Biol 148:1–17

    Google Scholar 

  • Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C (2018) Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf 162:147–159

    Article  CAS  PubMed  Google Scholar 

  • Gracey A, Troll J, Somero G (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci U S A 98:1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grau EG, Richman NH III, Borski RJ (1994) Osmoreception and a simple endocrine reflex of the prolactin cell of tilapia Oreochromis mossambicus. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in comparative endocrinology. National Research Council of Canada, Ottawa, pp 251–256

    Google Scholar 

  • Greaney GS, Place AR, Cashon RE, Smith G, Powers DA (1980) Time course of changes in enzyme activities and blood respiratory properties of killifish during long-term acclimation to hypoxia. Physiol Zool 53:136–144

    Article  CAS  Google Scholar 

  • Greco AM, Fenwick JC, Perry SF (1996) The effects of soft-water acclimatation on gill structure in rainbow trout Oncorhynchus mykiss. Cell Tiss Res 285:75–82.

  • Guan W-Z, Guo D-D, Sun Y-W, Chen J, Jiang X-Y, Zou S-M (2017) Characterization of duplicated heme oxygenase-1 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala). Fish Physiol Biochem 43:641–651

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Cui J, Li M, Liu H, Zhang M, Meng F, Shi G, Wang R, He X, Zhao Y (2018) Effect of feeding frequency on growth performance, antioxidant status, immune response and resistance to hypoxia stress challenge on juvenile dolly varden char Salvelinus malma. Aquaculture 486:197–201

    Article  Google Scholar 

  • Hansen TJ, Olsen RE, Stien L, Oppedal F, Torgersen T, Breck O, Remen M, Vagseth T, Fjelldal G (2015) Effect of water oxygen level on performance of diploid and triploid Atlantic salmon post-smolts reared at high temperature. Aquaculture 435:354–360

    Article  CAS  Google Scholar 

  • Henriksson P, Mandic M, Richards JG (2008) The osmoregulatory compromise in sculpin: impaired gas exchange is associated with freshwater tolerance. Physiol Biochem Zool 81:310–319

    Article  PubMed  Google Scholar 

  • Henrique M, Gomes E, Gouillou-Coustans M, Oliva-Teles A, Davies S (1998) Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 161:415–426

    Article  CAS  Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol 10. Academic Press, San Diego, pp 1–72

    Google Scholar 

  • Hughes GM, Morgan M (1973) The structure of gills in relation to their respiratory function. Biol Rev 48:419–475

    Article  Google Scholar 

  • Imsland AK, Foss A, Gunnarsson S, Berntssen MHG, FitzGerald R, Bonga SW, Ham EV, Nævdal G, Stefansson SO (2001) The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture 198:353–367

    Article  Google Scholar 

  • Ishibashi Y, Ekawa H, Hirata H, Kumai H (2002) Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fish Sci 68:1374–1383

    Article  CAS  Google Scholar 

  • Israeli D, Kimmel E (1996) Monitoring the behaviour of hypoxia-stressed Carassius auratus using computer vision. Aquac Eng 15:423–440

    Article  Google Scholar 

  • Jha AR, Miles CM, Lippert NR, Brown CD, White KP, Martin K (2015) Whole-genome re-sequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Mol Biol Evol 32(10):2616–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Chapman and Hall, London 309 pp

    Google Scholar 

  • Jobling M (1995) The influence of environmental temperature on growth and conversion efficiency in fish. Causes of observed variations in fish growth. ICES 1-25 C.M./P:4

  • Johnston IA, Bernard LM (1982) Ultrastructure and metabolism of skeletal muscle fibres in the tench: effects of long-term acclimation to hypoxia. Cell Tissue Res 227:179–199

    CAS  PubMed  Google Scholar 

  • Kestemont P, Baras E (2001) Environmental factors and feed intake: mechanisms and interactions. In: Houlihan DF, Boujard T, Jobling M (eds) Food intake in fish. Blackwell Science, Oxford, pp 131–156

    Chapter  Google Scholar 

  • Kisia SM, Hughes GM (1992) Estimation of oxygen-diffusing capacity of different sizes of a tilapia, Oreochromis niloticus. J Zool London 227:405–415

    Article  Google Scholar 

  • Kisia SM, Hughes GM (1993) Routine oxygen consumption in different size of a tilapia, Oreochromis niloticus (Trewavas) using the closed chamber respiratory method. Acta Biol Hun 44:367–374

    CAS  Google Scholar 

  • Kraemer LD, Schulte PM (2004) Prior PCB exposure suppresses hypoxia-induced up-regulation of glycolytic enzymes in Fundulus heteroclitus. Comp Biochem Physiol C 139:23–39

    CAS  Google Scholar 

  • Kvamme BO, Gadan K, Finne-Fridell F, Niklasson L, Sundh H, Sundell K, Taranger GL, Evensen Ø (2013) Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress. Fish Shellfish Immunol 34:55–65

    Article  CAS  PubMed  Google Scholar 

  • Law SHW, Wu RSS, Ng PKS, Yu RMK, Kong RYC (2006) Cloning and expression analysis of two distinct HIF-alpha isoforms - gcHIF-1alpha and gcHIF-4alpha - from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lays N, Iversen MMT, Frantzen M, Jorgensen EH (2009) Physiological stress responses in spotted wolfish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture 295:126–133

    Article  Google Scholar 

  • Li M, Wang X, Qi C, Li E, Du Z, Qin JG, Chen L (2018) Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress. Aquaculture 495:187–195

    Article  CAS  Google Scholar 

  • Lovell T (1998) Nutritional and feeding of fish, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz ME, Hegazi MM, El-Magd MA, Kasem EA (2015) Metabolic and molecular responses in Nile tilapia, Oreochromis niloticus during short and prolonged hypoxia. Mar Freshw Behav Physiol 48(5):319–340

    Article  CAS  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallya YJ (2007) The effects of dissolved oxygen on fish growth in aquaculture. The United Nations University fisheries training programmer, Final project, pp 30

  • Marshall WS, Embherley TR, Singer TD, Bryson SE, McCormick SD (1999) Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J Exp Biol 202:1535–1544

    PubMed  Google Scholar 

  • Martinez ML, Landry C, Boehm R, Manning S, Cheek AO, Rees BB (2006) Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. J Exp Biol 209:3851–3861

    Article  CAS  PubMed  Google Scholar 

  • Martínez ML, Raynard EL, Rees BB, Chapman LJ (2011) Oxygen limitation and tissue metabolic potential of the African fi sh Barbus neumayeri: roles of native habitat and acclimatization. BMC Ecol 11:1–8

    Article  CAS  Google Scholar 

  • Maxime V, Nonnotte G, Peyraud C, Williot P, Truchot JP (1995) Circulatory and respiratory effects of an hypoxic stress in the Siberian sturgeon. Res Physiol 100:203–212

    Article  CAS  Google Scholar 

  • Milla S, Mathieu C, Wang N, Lambert S, Nadzialek S, Massart S, Henrotte E, Douxfils J, Mélard C, Mandiki SN, Kestemont P (2010) Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish Immunol 28:931–941

    Article  CAS  PubMed  Google Scholar 

  • Mohindra V, Tripathi RK, Singh RK, Lal KK (2013) Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1α, −2α and -3α in hypoxia-tolerant Indian catfish, Clarias batrachus (Linnaeus, 1758). Mol Biol Rep 40:5805–5815

    Article  CAS  PubMed  Google Scholar 

  • Mohindra V, Tripathi RK, Singh A, Patangia R, Singh RK, Lal KK, Jena JK (2016) Hypoxic stress-responsive genes in air breathing catfish, Clarias magur (Hamilton 1822) and their possible physiological adaptive function. Fish Shellfish Immunol 59:46–56

    Article  CAS  PubMed  Google Scholar 

  • Morgan JD, Iwama GK (1999) Energy cost of NaCl transport in isolated gills of cutthroat trout. Am J Phys 277:631–639

    Google Scholar 

  • Muusze B, Marcon J, van den Thillart G, Almeida-Val V (1998) Hypoxia tolerance of Amazon fish respirometry and energy metabolism of the cichlid Astronotus Ocellatus. Comp Biochem Physiol (A) 120:151–156

    Article  Google Scholar 

  • Ni M, Wen H, Li J, Chi M, Bu Y, Ren Y, Zhang M, Song Z, Ding H (2014) The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol 36:325–335

    Article  CAS  Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions-why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol (A) 133:1–16

    Article  Google Scholar 

  • Nilsson S (1986) Control of gill blood flow. In: Nilsson S, Holmgren S (eds) Fish physiology: recent advances. Croom Helm, London, pp 86–101

    Chapter  Google Scholar 

  • Nilsson GE (2007) Gill remodeling in fish – a new fashion or an ancient secret? J Exp Biol 210:2403–2409

    Article  PubMed  Google Scholar 

  • Null SE, Mouzon NR, Elmore LR (2017) Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases. J Environ Manag 197:559–570

    Article  CAS  Google Scholar 

  • Olson KR (1991) Vasculature of the fish gill: anatomical correlates of physiological functions. J Elect Technol 19:389–405

    Article  CAS  Google Scholar 

  • Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L (2010) Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucl Acids Res 38:2332–2345

    Article  CAS  PubMed  Google Scholar 

  • Ortuno J, Esteban MA, Meseguer J (2002) Lack of effect of combining different stressors on innate immune responses of seabream. Vet Immunol Immunopathol 84:17–27

    Article  CAS  PubMed  Google Scholar 

  • Papoutsoglou SE, Tziha G (1996) Blue tilapia (Oreochromis aureus) growth rate in relation to dissolved oxygen concentration under recirculated water conditions. Aquac Eng 15:181–192

    Article  Google Scholar 

  • Perry SF, McDonald G (1993) Gas Exchange. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 251–278

    Google Scholar 

  • Pichavant K, Person-Le-Ruyet J, Le Bayon N, Severe A, Le Roux A, Quemener L, Maxime V, Nonnotte G, Boeuf G (2000) Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture 188:103–114

    Article  Google Scholar 

  • Pichavant K, Person-Le-Ruyet J, Le Bayon N, Severe A, Le Roux A, Boeuf G (2001) Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J Fish Biol 59:875–883

    Article  Google Scholar 

  • Pichavant K, Maxime V, Thébault MT, Ollivier H, Garnier JP, Bousquet B, Diouris M, Boeuf G, Nonnotte G (2002) Effects of hypoxia and subsequent recovery on turbot Scophtalmus maximus: hormonal changes and anaerobic metabolism. Mar Ecol Prog Ser 225:275–285

    Article  CAS  Google Scholar 

  • Pollock MS, Clarke LMJ, Dubé MG (2007) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ Rev 15:1–14

    Article  CAS  Google Scholar 

  • Polymeropoulos ET, Elliott NG, Frappell PB (2017) Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins. Comp Biochem Physiol (A) 213:28–35

    Article  CAS  PubMed  Google Scholar 

  • Poon WL, Hung CY, Nakano K, Randall DJ (2007) An in vivo study of common carp (Cyprinus carpio L.) liver during prolonged hypoxia. Comp Biochem Physiol (D) 2:295–302

    CAS  Google Scholar 

  • Portner H-O (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climaterelated stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  PubMed  Google Scholar 

  • Prasad MS (1986) Oxygen uptake during early life in the fresh water fish, Esomus danricus (Ham) (Pisces, Cypriniformes). Acta Physiol Hung 67:367–376

    CAS  PubMed  Google Scholar 

  • Prokic MD, Petrović TG, Gavric JP, Despotović SG, Gavrilović BR, Radovanovic TB, Faggio C, Saičić ZS (2018) Comparative assessment of the antioxidative defense system in subadult and adult anurans: a lesson from the Bufotes viridis toad. Zoology 130:30–37

    Article  PubMed  Google Scholar 

  • Qi D, Chao Y, Zhao Y, Xia M, Wu R (2018) Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. Fish Physiol Biochem 44:557–571

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Thomas P (2007) Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1α and HIF-2α, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene 396:273–282

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ, Daxboeck C (1984) Oxygen and carbon dioxide transfer across fish gills. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol 10A. Academic Press, Orlando, pp 263–314

    Google Scholar 

  • Randall DJ, Baumgarten D, Malyusz M (1972) The relationship between gas and ion transfer across the gills of fishes. Comp Biochem Physiol (A) 41:629–637

    Article  CAS  Google Scholar 

  • Randolph KN, Clemens HP (1976) Some factors influencing the feeding behaviour of channel catfish in culture ponds. Trans Am Fish Soc 105:718–724

    Article  Google Scholar 

  • Remen M, Oppedal F, Torgersen T, Imsland AK, Olsen RE (2012) Effects of cyclic environmental hypoxia on physiology and feed intake of post-smolt Atlantic salmon: initial responses and acclimation. Aquaculture 326–329:148–155

    Article  Google Scholar 

  • Richards JG (2011) Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol 214:191–199

    Article  PubMed  Google Scholar 

  • Rinaldi L, Basso P, Tettamanti G, Grimaldi A, Terova G, Saroglia M, de Eguileor M (2005) Oxygen availability causes morphological changes and a different VEGF/FIk-1/HIF-2 expression pattern in sea bass gills. It J Zool 72:103–111

    Article  CAS  Google Scholar 

  • Rodrigues FA, Marcolino-Gomes J, de Fátima Corrêa Carvalho J, do Nascimento LC, Neumaier N, Farias JRB, Carazzolle MF, Marcelino FC, Nepomuceno AL (2012) Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit. Gene Mol Biol 35:304–314

    Article  CAS  Google Scholar 

  • Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209(21):29–2137

    Google Scholar 

  • Routley MH, Nilsson GE, Renshaw GMC (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol (A) 131:313–321

    Article  Google Scholar 

  • Ruyet PJ, Lacut A, Le Bayon N, Le Roux A, Pichavant K, Quéméner L (2003) Effects of repeated hypoxic shocks on growth and metabolism of turbot juveniles. Aquat Living Resour 16:25–34

    Article  Google Scholar 

  • Sardella AB, Brauner CJ (2007) The osmorespiratory compromise in fish: the effects of physiological state and the environmental. In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG (eds) Fish respiration and environment. Science Publishers, Enfield, pp 147–165

    Chapter  Google Scholar 

  • Saroglia M, Cecchini S, Terova G, Caputo A, De Stradis A (2000) Influence of environmental temperature and water oxygen concentration on gas diffusion distance in sea bass (Dicentrarchus labrax, L.). Fish Physiol Biochem 23:55–58

    Article  CAS  Google Scholar 

  • Saroglia M, Terova G, De Stradis A, Caputa A (2002) Morphometric adaptations of sea bass gills to different dissolved oxygen partial pressures. J Fish Biol 60:1423–1430

    Article  Google Scholar 

  • Saroglia M, Terova G, Prati M (2007) Dissolved oxygen and gill morphometry. In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG (eds) Fish respiration and environment. Science Publishers, Enfield, pp 167–190

    Chapter  Google Scholar 

  • Saroglia M, Caricato G, Frittella F, Brambilla F, Terova G (2010) Dissolved oxygen regimen (PO2) may affect osmo-respiratory compromise in European sea bass (Dicentrarchus labrax, L.). It J An Sci 9:1–15

    Article  Google Scholar 

  • Schrøder MB, Villena AJ, Jørgensen T (1998) Ontogeny of lymphoid organs and immunoglobulin producing cells in Atlantic cod (Gadus morhua L). Dev Comp Immunol 22:507–517

    Article  PubMed  Google Scholar 

  • Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2012) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38:85–105

    Article  CAS  Google Scholar 

  • Sehonova P, Svobodova Z, Dolezelova P, Vosmerova P, Faggio C (2018) Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review. Sci Total Environ 631-632:789–794

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker CA, Evans JJ, Klesius PH (2000) Density and dose: factors affecting mortality of Streptococcus iniae infected tilapia Oreochromis niloticus. Aquaculture 188:229–235

    Article  Google Scholar 

  • Soivio A, Nikinmaa M, Westman K (1980) The blood oxygen binding properties of hypoxic Salmogairdneri. J Comp Physiol 136(B):83–87

    Article  Google Scholar 

  • Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG (2010) Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. Am J Phys Regul Integr Comp Phys 298:104–119

    Google Scholar 

  • Sula E, Aliko V (2017) Effects of stressors on hematological and immunological response in the fresh water crucian carp fish, Carassius carassius. Albanian J Agric Sci (Special edition) 583–590. ISSN: 2218-2020

  • Svobodova Z, Richard L, Jana M, Blanka V (1993) Water quality and fish health. EIFAC technical paper 54

  • Swanson C (1998) Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366

    PubMed  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terova G, Rimoldi S, Corà S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159

    Article  CAS  Google Scholar 

  • Terova G, Rimoldi S, Ceccuzzi P, Brambilla F, Antonini M, Saroglia M (2009) Molecular characterization and in vivo expression of hypoxia inducible factor (HIF)-1α in sea bass (Dicentrarchus labrax) exposed to acute and chronic hypoxia. It J Anim Sci 8(sup 2):875–877

    Article  Google Scholar 

  • Thetmeyer H, Waller U, Black KD, Inselmann S, Rosenthal H (1999) Growth of European sea bass (Dicentrarchus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture 174:355–367

    Article  Google Scholar 

  • Thomas LW, Mcnulty ST, Klesius PH (2007) Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus to enteric septicemia. J World Aquacult Soc 38:12–23

    Article  Google Scholar 

  • Thorarensen H, Gustavsson AO, Mallya Y, Gunnarsson S (2010) The effect of oxygen saturation on the growth and feed conversion of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 309:96–102

    Article  Google Scholar 

  • Tran-Duy A, Schrama JW, van Dam AA, Verreth JAJ (2008) Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture 275:152–162

    Article  Google Scholar 

  • Tripathi RK, Mohindra V, Singh A, Kumar R, Mishra RM, Jena JK (2013) Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish, Clarias batrachus (Linnaeus, 1758). J Biol Sci 38:373–383

    CAS  Google Scholar 

  • Tsadik GG, Kutty MN (1987) Influence of ambient oxygen on feeding and growth of tilapia, Oreochromis niloticus. ARAC/87/WP/10.United Nation Development Programme. Food and agriculture Organization of the United Nations, Nigerian institute for oceanography and marine research project RAF/87/009

  • Tzaneva V, Perry SF (2014) Heme oxygenase-1 (HO-1) mediated respiratory responses to hypoxia in the goldfish, Carassius auratus. Respir Physiol Neurobiol 199:1–8

    Article  CAS  PubMed  Google Scholar 

  • Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α. J Biol Chem 279:14871–14878

    Article  CAS  PubMed  Google Scholar 

  • Virani NA, Rees BB (2000) Oxygen consumption, blood lactate and inter-individual variation in the gulf killifish, Fundulus grandis, during hypoxia and recovery. Comp Biochem Physiol (A) 126:397–405

    Article  CAS  Google Scholar 

  • Wang J, Lu D-Q, Jiang B, Luo H-L, Lu G-L, Li A-X (2018) The effect of intermittent hypoxia under different temperature on the immunomodulation in Streptococcus agalactiae vaccinated Nile tilapia (Oreochromis niloticus). Fish Shelfish Immunol 79:181–192

    Article  CAS  Google Scholar 

  • Wedemeyer GA (1996) Interactions with water quality conditions in physiology of fish in intensive culture systems. Chapman and Hall, New York

    Google Scholar 

  • Welker TL, Mcnulty ST, Klesius PH (2007) Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus, to enteric septicemia. J World Aquacult Soc 38:12–23

    Article  Google Scholar 

  • Wells RMG, Baldwin J (2006) Plasma lactate and glucose flushes following burst swimming in silver trevally (Pseudocaranx dentex: Carangidae) support the “releaser” hypothesis. Comp Biochem Physiol (A) 143:347–352

    Article  CAS  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Sydney

    Google Scholar 

  • Wright PA, Perry SF, Moon TW (1989) Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol 147:148–169

    Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhong H, Zhao HH, Li T (2007) Effects of different dissolved oxygen concentration on metabolic level of juvenile rainbow trout (Oncorhynchus mykiss) in the recirculating systems. J Shanghai Fish Univ 16(5):438–442

    CAS  Google Scholar 

  • Xia M, ChaoY JJ, Li C, Kong Q, Zhao Y, Guo S, Qi D (2016) Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. J Comp Physiol B 186:1033–1043

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Abdel-Tawwab.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Tawwab, M., Monier, M.N., Hoseinifar, S.H. et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol Biochem 45, 997–1013 (2019). https://doi.org/10.1007/s10695-019-00614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00614-9

Keywords

Navigation