Skip to main content

Advertisement

Log in

n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryzias latipes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

n-Butyl acrylate (nBA) is one of acrylate esters which has been applied to diverse industrial fields. For unveiling of xeno-estrogenic effects and oxidative stress induction by nBA under two-generational exposure regimen (17 weeks), the biomarkers relevant to an estrogenic effect and oxidative stress were analyzed. Acute toxicity value of nBA in Oryzias latipes was 7.2 mg/L (96 h-LC50). Over exposure time, the significant transcriptional change of cytochrome P450 19A (CYP19A) and vitellogenin 1/2 (VTG1/2) was not observed (one-way ANOVA, P < 0.05), meaning no estrogenic effect of nBA. Significant reduction of glutathione (GSH) content was observed in F0 male and female fish, while in F1 male, the content was increased (P < 0.05). Catalase (CAT) activity of male fish showed the significant decrease in both F0 and F1 fish, showing multi-generational suppressing effect of nBA on CAT activity. But in case of reactive oxygen species (ROS), expression level and glutathione S-transferase (GST) activity were not modulated in response to nBA. These findings suggest that nBA could affect an antioxidant system alteration through GSH depletion and inhibition of CAT activity which could be transferred to the next generation, whereas xeno-estrogenic effect would be questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, russom CJ, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  PubMed  Google Scholar 

  • Bagnyukova TV, Storey KB, Lushchak VI (2005) Adaptive response of antioxidant enzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp Biochem Physiol B 142:335–341

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty T, Shibata Y, Zhou LY, Katsu Y, Iguchi T, Nagahama Y (2011) Differential expression of three estrogen receptor subtype mRNAs in gonads and liver from embryos to adults of the medaka, Oryzias latipes. Mol Cell Endocrinol 333:47–54

    Article  CAS  PubMed  Google Scholar 

  • Chan K, O’Brien PJ (2008) Structure-activity relationships for hepatocyte toxicity and electrophilic reactivity of α, β-unsaturated esters, acrylates and methacrylates. J Appl Toxicol 28:1004–1015

    Article  CAS  PubMed  Google Scholar 

  • Custodio JBA, Palmeira CM, Moreno AJ, Wallace KB (1998) Acrylic acid induces the glutathione-independent mitochondrial permeability transition in vitro. Toxicol Sci 43:19–27

    CAS  PubMed  Google Scholar 

  • Finch L, Frederick CB (1992) Rate and route of oxidation of acrylic acid to carbon dioxide in rat liver. Fundam Appl Toxicol 19:498–504

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Dai J, Zhao X, Liu C, Gao C, Liu R (2014) Spectroscopic investigations on the interaction between carbon nanotubes and catalase on molecular level. J Biochem Mol Toxicol 28:211–216

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on cancer (IARC) (1999) IARC Monographs on the evaluation of carcinogenic risks to humans: re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. https://monographs.iarc.fr/ENG/Monographs/vol71/mono71.pdf. Accessed 20 January 2018

  • International Maritime Organization (IMO) (2000) Protocol on preparedness, response and co-operation to pollution incidents by hazardous and noxious substances (OPRC-HNS protocol). http://www.bsmrcc.com/files/legal7. Accessed 20 January 2018

  • Jeong TY, Yuk MS, Jeon J, Kim SD (2016) Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna. Sci Total Environ 569-570:1553–1560

    Article  CAS  PubMed  Google Scholar 

  • Kashiwada S, Kameshiro M, Tatsuta H, Sugaya Y, Kullman SW, Hinton DE, Goka K (2007) Estrogenic modulation of CYP3A38, CYP3A40, and CYP19 in mature male medaka (Oryzias latipes). Comp Biochem Physiol C 145:370–378

    Google Scholar 

  • Kim B-M, Lee JW, Seo JS, Shin KH, Rhee JS, Lee JS (2015) Modulated expression and enzymatic activity of the monogonont rotifer Brachionus koreanus Cu/Zn- and Mn-superoxide dismutase (SOD) in response to environmental biocides. Chemosphere 120:470–478

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Won EJ, Raisuddin S, Lee JS (2015a) Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci 35:115–127

    Article  CAS  Google Scholar 

  • Lee JW, Yoon H-G, Lee SK (2015b) Benzo(a)pyrene-induced cytochrome P4501A expression of four freshwater fishes (Oryzias latipes, Danio rerio, Cyprinus carpio, and Zacco platypus). Environ Toxicol Pharmacol 39:1041–1050

  • Lee JW, Won E-J, Kang H-M, Hwang D-S, Kim D-H, Kim R-K, Lee S-J, Lee J-S (2016) Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). Aquat Toxicol 171:9–19

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee J-W, Shin YJ, Ryu TK, Ryu J, Lee J, Kim P, Choi K, Park K (2017a) Multi-generational xeno-estrogenic effects of perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system. Chemosphere 169:212–223

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee J-W, Kim K, Shin YJ, Kim J, Kim S, Kim H, Kim P, Park K (2017b) PFOA-induced metabolism disturbance and multi-generational reproductive toxicity in Oryzias latipes. J Hazard Mater 340:231–240

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang J, Wei Y, Zhang H, Xu M, Dai J (2008) Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat Toxicol 89:242–250

    Article  CAS  PubMed  Google Scholar 

  • Livark KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Manthey D, Behl C (2006) From structural biochemistry to expression profiling neuroprotective activities of estrogen. Neuroscience 138:845–850

    Article  CAS  PubMed  Google Scholar 

  • Ministry of the Environment, Japan (MOE) (2014) Butyl-acrylate. https://www.env.go.jp/en /chemi /chemicals /profile_erac /prfile11 /pf1-02.pdf. Accessed 20 January

  • National Institute of Chemical Safety (NICS) (2016) Circulation amount of n-butyl acrylate at 2010 of Republic of Korea. Daejeon, Republic of Korea

  • Neuparth T, Moreira S, Santos MM, Reis-Henriques MA (2011) Hazardous and noxious substances (HNS) in the marine environment: prioritizing HNS that pose major risk in a European context. Mar Pollut Bull 62:21–28

    Article  CAS  PubMed  Google Scholar 

  • OECD (2015) OECD guideline for testing of chemicals. No. 240. Medaka extended one-generation reproduction test (MEOGRT). https://www.oecd-ilibrary.org/OECD240.pdf. Accessed 20 Jan 2018

  • OECD-SID Screening information data set (2002) N-butyl acrylate. Organization for economic cooperation and development. https://www.inchem.org/documents/sids/sids/141322.pdf. Accessed 20 January 2018

  • Parenti LR (2008) A phylogenetic analysis and taxonomic revision of rice fishes, Oryzias latipes and relatives (Beloniformes, Adrianichthyidae). Zool J Linn Soc Lond 154:494–610

    Article  Google Scholar 

  • Patil JG, Gunasekera MG (2008) Tissue and sexually dimorphic expression of ovarian and brain aromatase mRNA in the Japanese medaka (Oryzias latipes): implications for their preferential roles in ovarian and neural differentiation and development. Gen Comp Endocrinol 158:131–137

    Article  CAS  PubMed  Google Scholar 

  • Patyna PJ, Davi RA, Parkerton T, Brown RP, Cooper K (1999) A proposed multi generation protocol for Japanese medaka (Oryzias latipes) to evaluate effects of endocrine disruptors. Sci Total Environ 233:211–220

    Article  CAS  PubMed  Google Scholar 

  • PubChem (2017) Butyl acrylate. http://pubchem.ncbi.nlm.nih.gov/compound/8846#section. Accessed 20 Jan 2018

  • Rocha ACS, Reis-Henriques MA, Galhano V, Ferreira M, Guimaraes L (2016) Toxicity of seven priority hazardous and noxious substances (HNSs) to recommendations for future research. Sci Total Environ 542:728–749

    Article  CAS  PubMed  Google Scholar 

  • Sanders JM, Burka LT, Matthews HB (1998) Metabolism and disposition of n-butyl acrylate in male Fischer rats. Drug Metab Dispos 16:429–434

    Google Scholar 

  • Shao B, Zhu L, Dong M, Wang J, Wang J, Xie H, Zhang Q, du Z, Zhu S (2012) DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(1):16

    Article  Google Scholar 

  • Sobocanec S, Saric A, Safranko ZM, Hadzija MP, Abramic M, Balog T (2015) The role of 17B-estradiol in the regulation of antioxidant enzymes via the Nrf2-Keap1 pathway in the livers of CBA/H mice. Life Sci 130:57–65

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  • Stegeman JJ, Hahn ME (1994) Molecular biochemical and cellular perspectives. In: Malins DC, Ostrander GK (eds) Aquatic toxicology. Lewis Publishers. CRC Press, Boca Raton, pp 87–206

    Google Scholar 

  • Sverko V, Sobocanec S, Balog T, Marotti T (2004) Age and gender differences in antioxidant enzyme activity: potential relationship to liver carcinogenesis in male mice. Biogerontology 5:235–242

    Article  CAS  PubMed  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Ishibashi H, Kohra S, Arizono K, Tominaga N (2005) Short-term effects of endocrine-disrupting chemicals on the expression of estrogen-responsive genes in male medaka (Oryzias latipes). Aquat Toxicol 90:261–268

    Article  CAS  Google Scholar 

  • Yang B, Hao F, Li J, Chen D, Liu R (2013) Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetric and molecular docking studies. J Photochem Photobiol B Biol 128:35–42

    Article  CAS  Google Scholar 

  • Zhang H-M, Cao J, Tang B-P, Wang Y-Q (2014) Effect of TiO2 nanoparticles on the structure and activity of catalase. Chem Biol Interact 219:168–174

    Article  CAS  PubMed  Google Scholar 

  • Zhou B (2015) Adverse outcome pathway: framework, application, and challenges in chemical risk assessment. J Environ Sci 35:191–193

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (ex: NIER-2016-01-01-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunghwa Park.

Ethics declarations

Declaration of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.W., Lee, JW., Kim, K. et al. n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryzias latipes. Fish Physiol Biochem 45, 873–883 (2019). https://doi.org/10.1007/s10695-018-0584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0584-z

Keywords