Skip to main content

Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species

Abstract

The study of the toxic effect of carbofuran and multiwalled carbon nanotubes (MWCNTs) on Astyanax ribeirae metabolism is of paramount importance due to the increasing use of this pesticide in agriculture and in the production of nanotubes within the material industry. This study aimed to evaluate the effects of carbofuran, MWCNT, and the combination of these compounds on specific oxygen consumption and excretion of ammonia in A. ribeirae. Therefore, 65 fish were divided into three groups of treatments at varying concentrations: carbofuran (0.01, 0.05, 0.1, and 0.5 mg/L), MWCNT (0.1, 0.25, 0.5, and 1.0 mg/L), and 0.5 mg/L of MWCNT added to carbofuran concentrations (0.01, 0.05, 0.1, and 0.5 mg/L). The average specific oxygen consumption in the groups exposed to carbofuran, compared to the control, increased 73.49% at the 0.01 mg/L concentration and decreased 63.86% and 91.57% with treatments of 0.1 and 0.5 mg/L, respectively. For groups exposed to the MWCNT, there was an 83.91% drop with the 1.0 mg/L treatment, and the carbofuran + MWCNT groups recorded a decrease of 71.09%, 92.77%, and 93.98% at concentrations of 0.05, 0.1, and 0.5 mg/L, respectively. In relation to specific ammonia excretion, in groups exposed to carbofuran compared to the control, there was an increase of 134.37% and 200% with the 0.1 and 0.5 mg/L treatments, respectively. The group exposed to carbofuran + MWCNT experienced a decrease of 60% and 80% with treatments of 0.1 mg/L carbofuran + 0.5 mg/L MWCNT and 0.5 mg/L carbofuran + 0.5 mg/L MWCNT, respectively. Therefore, it was concluded that carbofuran + MWCNT interact, increasing the effects in Astyanax sp.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arias ARL, Buss DF, Alburquerque C, Inácio AF, Freire MM, Egler M, Mugnal R, Baptista DF (2007) Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência e Saúde Coletiva 12:61–72

    Article  PubMed  Google Scholar 

  2. Barbieri E (2007) Use of metabolism and swimming activity to evaluate the sublethal toxicity of surfactant (LAS-C12) on Mugil platanus. Braz Arch Biol Technol 50:101–112

    Article  CAS  Google Scholar 

  3. Barbieri E, Moreira P, Luchini LA, Hidalgo KR, Muñoz A (2013) Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels. Toxicol Ind Health 29:1–8

    Google Scholar 

  4. Barbieri E, Campos-Garcia J, Martinez DST, Silva JRMC, Alves OL, Rezende KFO (2016) Histopathological effects on gills of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–1169

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri E, Ruíz-Hidalgo K, Rezende LAFG, Sabino FP (2017a) Efectos del carbofuran en juveniles de Oreochromis niloticus en la toxicidad, metabólica de rutina y los parámetros hematológicos. Bol. Inst Pesca 43:513–526

    Article  Google Scholar 

  6. Barbieri E, Ferreira AC, Rezende KFO (2017b) Cadmium effects on shrimp ammonia excretion (Farfantepenaeus paulensis) at different temperatures and levels. PanamJAS 12:176–183

    Google Scholar 

  7. Brito R, Chimal ME, Gaxiola G, Rosas C (2000) Growth, metabolic rate, and digestive enzyme activity in the white shrimp Litopenaeus setiferus early postlarvae fed different diets. J Exp Mar Biol Ecol 255:21–36

    Article  CAS  PubMed  Google Scholar 

  8. Britto RS, Garcia ML, Rocha AM, Flores JA, Pinheiro MVB, Monserrat JM, Ferreira JLR (2012) Effects of carbon nanomaterials fullerene C60 and fullerol C60 (OH)18–22 on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation. Aquat Toxicol 114–115:80–87

    Article  CAS  Google Scholar 

  9. Bueno-Krawczyk ACD, Guiloski IC, Piancini LDS, Azevedo JC, Ramsdorf WA, Ide AH, Guimarães ATB, Cestari MM, Silva de Assis HC (2015) Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere 135:257–264

    Article  CAS  PubMed  Google Scholar 

  10. Campos-Garcia J, Martinez DST, Alves OL, Leonardo AFG, Barbieri E (2015) Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity. Ecotoxicol Environ Saf 11:131–137

    Article  CAS  Google Scholar 

  11. Campos-Garcia J, Martinez DST, Rezende KFO, Silva JRMC, Alves OL, Barbieri E (2016) Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicol Environ Saf 133:481–488

    Article  CAS  PubMed  Google Scholar 

  12. Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 15:168–177

    Article  CAS  Google Scholar 

  13. Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multiwalled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–225

    Article  CAS  PubMed  Google Scholar 

  14. Christiansen PD, Brozek K, Hansen BW (1998) Energetic and behavioral responses by the common goby, Pomatoschistus microps (Kroyer), exposed to linear alkybenzene sulfonate. Environ Toxicol Chem 17:2051–2057

    Article  CAS  Google Scholar 

  15. Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva de Assis HC, Schnitzler MC, Carneiro PG, Cestari MM (2018) Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicol Environ Saf 150:215–223

    Article  CAS  PubMed  Google Scholar 

  16. Cort CCWD, Ghisi NC (2014) Uso de alterações morfológicas nucleares em Astyanax spp. para avaliação da contaminação aquática. Mundo Saúde 38:31–39

    Google Scholar 

  17. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  CAS  PubMed  Google Scholar 

  18. Dresselhaus MS, Endo M (2001) Relation of carbon nanotubes to other carbon materials- carbon nanotubes. Top Appl Phys 80:11–28

    Article  CAS  Google Scholar 

  19. Emerich DF (2005) Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663

    Article  CAS  PubMed  Google Scholar 

  21. Erbe MCL, Ramsdorf WA, Vicari T, Cestari MM (2010) Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna. Ecotoxicology 20(2):320–328

    Article  CAS  PubMed  Google Scholar 

  22. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  PubMed  Google Scholar 

  23. Galvan GL, Lirola JR, Felisbino K, Vicari T, Yamamoto CI, Cestari MM (2016) Genetic and hematologic endpoints in Astyanax altiparanae (Characidae) after exposure and recovery to water-soluble fraction of gasoline (WSFG). Bull Environ Contam Toxicol 97:63–70

    Article  CAS  PubMed  Google Scholar 

  24. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  25. Griffitt RJ, Weil R, Hyndman HA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 4:8178–8186

    Article  CAS  Google Scholar 

  26. Handy RD, Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicol 17:287–314

    Article  CAS  Google Scholar 

  27. Hernández-Moreno D, Pérez-López M, Soler F, Gravato C, Guilhermino L (2011) Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): study of biomarkers and behaviour alterations. Ecotoxicol Environ Saf 74:1905–1912

    Article  CAS  PubMed  Google Scholar 

  28. Jash NB, Bhattacharaya S (1983) Delayed toxicity of carbofuran in fresh water teleost Channa punctatus. Indian J Exp Biol 17:693–697

    Google Scholar 

  29. Lemaire P, Sturve J, Forlin L, Livingstone DR (1996) Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Mar Environ Res 2:317–321

    Article  Google Scholar 

  30. Luz RAS, Martins MVA, Magalhães JL, Siqueira-Junior V, Zucolotto ON, Oliveira-Junior FN, Crespilho WC, Silva R (2011) Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine. Mater Chem Phys 130:1072–1077

    Article  CAS  Google Scholar 

  31. Marques MN, Cotrim MB, Pires MAF, Filho OB (2007) Avaliação do impacto da agricultura em áreas de proteção ambiental, pertencentes à bacia hidrográfica do Rio Ribeira de Iguape, São Paulo. Quim Nova 30:1171–1178

    Article  CAS  Google Scholar 

  32. Martinez DST, Alves OL (2013) Interação de nanomateriais com biossistemas e a nanotoxicologia: na direção de uma regulamentação. Ciência Cultura 65:32–36

    Article  Google Scholar 

  33. Martinez DST, Alves OL, Barbieri E (2013) Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser 429:1–8

    Article  CAS  Google Scholar 

  34. Moghimi SM, Hunter AC, Murray (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  CAS  PubMed  Google Scholar 

  35. Mommsen T (1998). Growth and metabolism. In: Evans D (ed) The Physiology of Fishes, Second edititon, CRC Press, Boca Raton, pp. 65–100

  36. Moreira JC, Gonçalves ES, Bereta M (2013) Contaminantes Emergentes – Desafios e Perspectivas, CBQ. 51p

  37. Nogueira MM, Cotrim MEB, Pires MAF (2007) Avaliação do impacto da agricultura em áreas de proteção ambiental, pertencentes à bacia hidrográfica do Rio Ribeira de Iguape, São Paulo. Quim Nova 30:1171–1178

    Article  Google Scholar 

  38. Renwick LC, Brown DA, Clouter K, Donaldson (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rezende KFO, Bergami E, Alves KVB, Corsi I, Barbieri E (2018) Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Bol Inst Pesca 44:343–343

    Article  Google Scholar 

  40. Santos DB, Barbieri E, Bondioli AC, Melo CB (2014) Effects of lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. Mundo Saúde 38:16–23

    Article  Google Scholar 

  41. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  CAS  PubMed  Google Scholar 

  42. Tomquelski GV, Martins GLM, Dias TS (2015) Características e manejo de pragas da cultura da soja. Pesquisa, Tecnologia e Produtividade 2:61–82

    Google Scholar 

  43. Winkler L (1888) Methods for measurement of dissolved oxygen. Ber Deutsch Chem Ges 21:2843–2854

    Article  Google Scholar 

  44. Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591–1598

    Article  CAS  PubMed  Google Scholar 

  45. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Yu K, Li F, Xiang J (2017) Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicol Environ Saf 145:549–556

    Article  CAS  PubMed  Google Scholar 

  47. Zhen Y, Aili J, Changhai W (2010) Oxygen consumption, ammonia excretion, and filtration rate of the marine bivalve Mytilus edulis exposed to methamidophos and omethoate. Mar Freshw Behav Physiol 43:243–255

    Article  CAS  Google Scholar 

  48. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the FAPESP–São Paulo Research Foundation (process 503 2012/50184-8) and CNPq (process 303920/2013-0). The author (Alves, O.L.) gratefully acknowledge financial support from CNPq, INCT-Inomat, and NanoBioss-SisNANO/MCTI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edison Barbieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbieri, E., Ferrarini, A.M.T., Rezende, K.F.O. et al. Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species. Fish Physiol Biochem 45, 417–426 (2019). https://doi.org/10.1007/s10695-018-0573-2

Download citation

Keywords

  • Nanoparticles
  • Pesticide
  • Ammonia excretion
  • Oxygen consumption