Advertisement

Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources?

  • Jelena Lujić
  • Zoran Marinović
  • Simona Sušnik Bajec
  • Ida Djurdjevič
  • Béla Urbányi
  • Ákos Horváth
Article

Abstract

Interspecific transplantation of germ cells from the brown trout Salmo trutta m. fario and the European grayling Thymallus thymallus into rainbow trout Oncorhynchus mykiss recipients was carried out in order to improve current practices in conservation of genetic resources of endangered salmonid species in the Balkan Peninsula. Current conservation methods mainly include in situ efforts such as the maintenance of purebred individuals in isolated streams and restocking with purebred fingerlings; however, additional ex situ strategies such as surrogate production are needed. Steps required for transplantation such as isolation of high number of viable germ cells and fluorescent labeling of germ cells which are to be transplanted have been optimized. Isolated and labeled brown trout and grayling germ cells were intraperitoneally transplanted into 3 to 5 days post hatch rainbow trout larvae. Survival of the injected larvae was comparable to the controls. Sixty days after transplantation, fluorescently labeled donor cells were detected within the recipient gonads indicating successful incorporation of germ cells (brown trout spermatogonia and oogonia—27%; grayling spermatogonia—28%; grayling oogonia—23%). PCR amplification of donor mtDNA CR fragments within the recipient gonads additionally corroborated the success of incorporation. Overall, the transplantation method demonstrated in this study presents the first step and a possible onset of the application of the germ cell transplantation technology in conservation and revitalization of genetic resources of endangered and endemic species or populations of salmonid fish and thus give rise to new or improved management strategies for such species.

Keywords

Spermatogonia Oogonia Transplantation Salmo trutta Thymallus thymallus 

Notes

Acknowledgements

We would like to thank Dr. Goro Yoshizaki and his team for the valuable training and support during this research. We would also like to express our gratitude to the manager of the Bled hatchery (Slovenia) for providing juvenile fish for all the experiments and the manager of the Vodomec hatchery (Slovenia) for rearing the rainbow trout fry.

Funding information

This study was supported by the National Research, Development and Innovation Office of Hungary (grants SNN 116912 to ÁH and FK 124585 to JL), the Slovenian Research Agency (grants N4-0045 and P4-0220), and the Stipendium Hungaricum Scholarship Programme (grant 106360 to ZM).

Compliance with ethical standards

Treatment of the animals was carried out following the Slovenian national regulations, and the experimental procedures were approved by the Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection, Ministry of Agriculture and Environment (decision letter U34401-30/2013/4).

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622.  https://doi.org/10.1016/S0169-5347(01)02290-X CrossRefGoogle Scholar
  2. Asturiano JF, Cabrita E, Horváth Á (2017) Progress, challenges and perspectives on fish gamete cryopreservation: a mini-review. Gen Comp Endocrinol 245:69–76.  https://doi.org/10.1016/j.ygcen.2016.06.019 CrossRefPubMedGoogle Scholar
  3. Berrebi P, Povz M, Jesensek D, Cattaneo-Berrebi G, Crivelli AJ (2000) The genetic diversity of native, stocked and hybrid populations of marble trout in the Soca river, Slovenia. Heredity (Edinb) 85:277–287.  https://doi.org/10.1046/j.1365-2540.2000.00753.x CrossRefGoogle Scholar
  4. Berrebi P, Tougard C, Dubois S, Shao Z, Koutseri I, Petkovski S, Crivelli A (2013) Genetic diversity and conservation of the Prespa trout in the Balkans. Int J Mol Sci 14:23454–23470.  https://doi.org/10.3390/ijms141223454 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bianco PG (2014) An update on the status of native and exotic freshwater fishes of Italy. J Appl Ichthyol 30:62–77.  https://doi.org/10.1111/jai.12291 CrossRefGoogle Scholar
  6. Crête-Lafrenière A, Weir LK, Bernatchez L (2012) Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS One 7:e46662.  https://doi.org/10.1371/journal.pone.0046662 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crivelli AJ, Poizat G, Berrebi P et al (2000) Conservation biology applied to fish: the example of a project for rehabilitating the marble trout (Salmo marmoratus) in Slovenia. Cybium 24:211–230Google Scholar
  8. Dobrinski I, Avarbock MR, Brinster RL (1999) Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 61:1331–1339.  https://doi.org/10.1095/biolreprod61.5.1331 CrossRefPubMedGoogle Scholar
  9. Falahatkar B, Poursaeid S, Kitada R, Yoshizaki G (2017) Hypothermic storage of isolated spermatogonia and oogonia from rainbow trout (Oncorhynchus mykiss). Cryobiology 76:125–128.  https://doi.org/10.1016/j.cryobiol.2017.03.005 CrossRefPubMedGoogle Scholar
  10. Fernández-Díez C, Pérez-Sanchiz R, Sarasquete C, Cabrita E, Herráez MP (2012) New tools for genome preservation: grafting germinal cells in brown trout (Salmo trutta). J Appl Ichthyol 28:916–918.  https://doi.org/10.1111/jai.12077 CrossRefGoogle Scholar
  11. Fumagalli L, Snoj A, Jesenšek D, Balloux F, Jug T, Duron O, Brossier F, Crivelli AJ, Berrebi P (2002) Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Mol Ecol 11:2711–2716.  https://doi.org/10.1046/j.1365-294X.2002.01648.x CrossRefPubMedGoogle Scholar
  12. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112.  https://doi.org/10.1111/j.1095-8312.1999.tb01160.x CrossRefGoogle Scholar
  13. Honaramooz A, Megee SO, Dobrinski I (2002) Germ cell transplantation in pigs. Biol Reprod 66:21–28.  https://doi.org/10.1095/biolreprod66.1.21 CrossRefPubMedGoogle Scholar
  14. Horváth Á, Jesenšek D, Csorbai B, Bokor Z, Raboczki É, Kaczkó D, Bernáth G, Hoitsy G, Urbányi B, Bajec SS, Snoj A (2012) Application of sperm cryopreservation to hatchery practice and species conservation: a case of the Adriatic grayling (Thymallus thymallus). Aquaculture 358–359:213–215.  https://doi.org/10.1016/j.aquaculture.2012.07.012 CrossRefGoogle Scholar
  15. Kise K, Yoshikawa H, Sato M, Tashiro M, Yazawa R, Nagasaka Y, Takeuchi Y, Yoshizaki G (2012) Flow-cytometric isolation and enrichment of teleost type A spermatogonia based on light-scattering properties. Biol Reprod 86:1–12.  https://doi.org/10.1095/biolreprod.111.093161 CrossRefGoogle Scholar
  16. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Imprimerie du Democrate, SA, DelemontGoogle Scholar
  17. Lacerda SMSN, Batlouni SR, Silva SBG et al (2006) Germ cells transplantation in fish: the Nile-tilapia model. Anim Reprod 3:146–159Google Scholar
  18. Lahnsteiner F, Weismann T, Patzner R (1996) Cryopreservation of semen of the grayling (Thymallus thymallus) and the Danube salmon (Hucho hucho). Aquaculture 144:265–274.  https://doi.org/10.1016/S0044-8486(96)01308-7 CrossRefGoogle Scholar
  19. Lahnsteiner F, Weismann T, Patzner RA (1997) Methanol as cryoprotectant and the suitability of 1.2 ml and 5 ml straws for cryopreservation of semen from salmonid fishes. Aquac Res 28:471–479.  https://doi.org/10.1046/j.1365-2109.1997.00886.x CrossRefGoogle Scholar
  20. Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci U S A 110:1640–1645.  https://doi.org/10.1073/pnas.1218468110 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Linhartová Z, Rodina M, Guralp H, Gazo I, Saito T (2014) Isolation and cryopreservation of early stages of germ cells of tench (Tinca tinca). Czech J Anim Sci 59:381–390CrossRefGoogle Scholar
  22. Lujić J, Marinović Z, Sušnik Bajec S, Djurdjevič I, Kása E, Urbányi B, Horváth Á (2017) First successful vitrification of salmonid ovarian tissue. Cryobiology 76:154–157.  https://doi.org/10.1016/j.cryobiol.2017.04.005 CrossRefPubMedGoogle Scholar
  23. Marinović Z, Lujić J, Kása E, Bernáth G, Urbányi B, Horváth Á (2017) Cryosurvival of isolated testicular cells and testicular tissue of tench Tinca tinca and goldfish Carassius auratus following slow-rate freezing. Gen Comp Endocrinol 245:77–83.  https://doi.org/10.1016/j.ygcen.2016.07.005 CrossRefPubMedGoogle Scholar
  24. McCloy RA, Rogers S, Caldon CE et al (2014) Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412CrossRefPubMedPubMedCentralGoogle Scholar
  25. Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G (2007) Production of trout offspring from triploid salmon parents. Science 317:1517.  https://doi.org/10.1126/science.1145626 CrossRefPubMedGoogle Scholar
  26. Okutsu T, Shikina S, Sakamoto T, Mochizuki M, Yoshizaki G (2015) Successful production of functional Y eggs derived from spermatogonia transplanted into female recipients and subsequent production of YY supermales in rainbow trout, Oncorhynchus mykiss. Aquaculture 446:298–302.  https://doi.org/10.1016/j.aquaculture.2015.05.020 CrossRefGoogle Scholar
  27. Pšenička M, Saito T, Linhartová Z, Gazo I (2015) Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology 83:1085–1092.  https://doi.org/10.1016/j.theriogenology.2014.12.010 CrossRefPubMedGoogle Scholar
  28. Pustovrh G, Sušnik Bajec S, Snoj A (2011) Evolutionary relationship between marble trout of the northern and the southern Adriatic basin. Mol Phylogenet Evol 59:761–766.  https://doi.org/10.1016/j.ympev.2011.03.024 CrossRefPubMedGoogle Scholar
  29. Robles V, Riesco MF, Psenicka M, Saito T, Valcarce DG, Cabrita E, Herráez P (2017) Biology of teleost primordial germ cells (PGCs) and spermatogonia: biotechnological applications. Aquaculture 472:4–20.  https://doi.org/10.1016/j.aquaculture.2016.03.004 CrossRefGoogle Scholar
  30. Sato M, Morita T, Katayama N, Yoshizaki G (2014) Production of genetically diversified fish seeds using spermatogonial transplantation. Aquaculture 422–423:218–224.  https://doi.org/10.1016/j.aquaculture.2013.12.016 CrossRefGoogle Scholar
  31. Shedko SV, Miroshnichenko IL, Nemkova GA (2013) Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of mtDNA data. Russ J Genet 49:623–637.  https://doi.org/10.1134/S1022795412050201 CrossRefGoogle Scholar
  32. Shikina S, Nagasawa K, Hayashi M, Furuya M, Iwasaki Y, Yoshizaki G (2013) Short-term in vitro culturing improves transplantability of type a spermatogonia in rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 80:763–773.  https://doi.org/10.1002/mrd.22208 PubMedCrossRefGoogle Scholar
  33. Snoj A, Glamuzina B, Razpet A, Zablocki J, Bogut I, Lerceteau-Köhler E, Pojskić N, Sušnik S (2010) Resolving taxonomic uncertainties using molecular systematics: Salmo dentex and the Balkan trout community. Hydrobiologia 651:199–212.  https://doi.org/10.1007/s10750-010-0297-5 CrossRefGoogle Scholar
  34. Snoj A, Melkič E, Sušnik S et al (2002) DNA phylogeny supports revised classification of Salmothymus obtusirostris. Biol J Linn Soc 77:399–411CrossRefGoogle Scholar
  35. Sušnik S, Snoj A, Dovč P (2001) Evolutionary distinctness of grayling (Thymallus thymallus) inhabiting the Adriatic river system, as based on mtDNA variation. Biol J Linn Soc 74:375–385.  https://doi.org/10.1006/bijl.2001.0583 CrossRefGoogle Scholar
  36. Sušnik S, Snoj A, Wilson IF et al (2007) Historical demography of brown trout (Salmo trutta) in the Adriatic drainage including the putative S. letnica endemic to Lake Ohrid. Mol Phylogenet Evol 44:63–76.  https://doi.org/10.1016/j.ympev.2006.08.021 CrossRefPubMedGoogle Scholar
  37. Sušnik Bajec S, Pustovrh G, Jesenšek D, Snoj A (2015) Population genetic SNP analysis of marble and brown trout in a hybridization zone of the Adriatic watershed in Slovenia. Biol Conserv 184:239–250.  https://doi.org/10.1016/j.biocon.2015.01.033 CrossRefGoogle Scholar
  38. Vincenzi S, Crivelli AJ, Jesenšek D, De Leo GA (2010) The management of small, isolated salmonid populations: do we have to fix it if it ain’t broken? Anim Conserv 13:21–23.  https://doi.org/10.1111/j.1469-1795.2009.00292.x CrossRefGoogle Scholar
  39. Vincenzi S, Mangel M, Jesenšek D et al (2016) Within and among-population variation in vital rates and population dynamics in a variable environment. Ecol Appl 26:2086–2102.  https://doi.org/10.1101/028662 CrossRefPubMedGoogle Scholar
  40. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yoshizaki G, Fujinuma K, Iwasaki Y, Okutsu T, Shikina S, Yazawa R, Takeuchi Y (2011) Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp Biochem Physiol Part D Genomics Proteomics 6:55–61.  https://doi.org/10.1016/j.cbd.2010.05.003 CrossRefPubMedGoogle Scholar
  42. Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137:1227–1230.  https://doi.org/10.1242/dev.044982 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jelena Lujić
    • 1
  • Zoran Marinović
    • 1
  • Simona Sušnik Bajec
    • 2
  • Ida Djurdjevič
    • 2
  • Béla Urbányi
    • 1
  • Ákos Horváth
    • 1
  1. 1.Department of AquacultureSzent István UniversityGödöllőHungary
  2. 2.Department of Animal Science, Biotechnical FacultyUniversity of LjubljanaDomžaleSlovenia

Personalised recommendations