Advertisement

Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?

  • Oliana Carnevali
  • Stefania Santangeli
  • Isabel Forner-Piquer
  • Danilo Basili
  • Francesca Maradonna
Article

Abstract

Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.

Keywords

Ovary Testis Environmental pollution Sex reversal Epigenetic 

Notes

Funding information

Supported by the Ministry of Health—RICERCA FINALIZZATA 2009 “Food and environmental safety: the problem of the endocrine disruptors” to OC and AM; 2012 2015 COST European Cooperation in the field of Scientific and Technical Research “AQUAGAMETE” to OC and by Progetti di Rilevante Interesse Nazionale (PRIN) 2010–2011 prot 2010W87LBJ to OC.

References

  1. Abascal FJ, Cosson J, Fauvel C (2007) Characterization of sperm motility in sea bass: the effect of heavy metals and physicochemical variables on sperm motility. J Fish Biol 70:509–522.  https://doi.org/10.1111/j.1095-8649.2007.01322.x CrossRefGoogle Scholar
  2. Acosta IB, Junior ASV, Silva EF et al (2016) Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicol Rep 3:696–700.  https://doi.org/10.1016/j.toxrep.2016.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Afifah N, Ismail H, Wee SY, Aris AZ (2017) Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 188:388.  https://doi.org/10.1016/j.chemosphere.2017.08.150 CrossRefGoogle Scholar
  4. Alavi SMH, Hatef A, Pšenička M et al (2012a) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fish 22:861–886CrossRefGoogle Scholar
  5. Alavi SMH, Rodina M, Gela D, Linhart O (2012b) Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev Fish Biol Fish 22:695–717CrossRefGoogle Scholar
  6. Aniagu SO, Williams TD, Allen Y et al (2008) Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-β oestradiol. Environ Int 34:310–317.  https://doi.org/10.1016/j.envint.2007.03.009 PubMedCrossRefGoogle Scholar
  7. Annibaldi A, Illuminati S, Truzzi C et al (2015) Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy. Mar Pollut Bull 96:441–449.  https://doi.org/10.1016/j.marpolbul.2015.05.008 PubMedCrossRefGoogle Scholar
  8. Aoki KAA, Harris CA, Katsiadaki I, Sumpter JP (2011) Evidence suggesting that di-n-butyl phthalate has antiandrogenic effects in fish. Environ Toxicol Chem 30:1338–1345.  https://doi.org/10.1002/etc.502 PubMedCrossRefGoogle Scholar
  9. Baker ME, Hardiman G (2014) Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. J Mol Endocrinol 52:R241–R256.  https://doi.org/10.1530/JME-13-0219 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baumann L, Knörr S, Keiter S et al (2014a) Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol. Toxicol Appl Pharmacol 278:230–237.  https://doi.org/10.1016/j.taap.2014.04.025 PubMedCrossRefGoogle Scholar
  11. Baumann L, Knörr S, Keiter S et al (2014b) Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone. Environ Toxicol Chem 33:2488–2496.  https://doi.org/10.1002/etc.2698 PubMedCrossRefGoogle Scholar
  12. Blair RM, Fang H, Branham WS et al (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54:138–153.  https://doi.org/10.1093/toxsci/54.1.138 PubMedCrossRefGoogle Scholar
  13. Boscolo Pereira TS, Pereira Boscolo CN, Felício AA et al (2016) Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus). Chemosphere 146:497–502.  https://doi.org/10.1016/j.chemosphere.2015.12.073 PubMedCrossRefGoogle Scholar
  14. Cameron BE, Craig PM, Trudeau VL (2016) Implication of microRNA deregulation in the response of vertebrates to endocrine disrupting chemicals. Environ Toxicol Chem 35:788–793.  https://doi.org/10.1002/etc.3063 PubMedCrossRefGoogle Scholar
  15. Cardinali M, Maradonna F, Olivotto I et al (2004) Temporary impairment of reproduction in freshwater teleost exposed to nonylphenol. Reprod Toxicol 18:597–604.  https://doi.org/10.1016/j.reprotox.2004.03.001 PubMedCrossRefGoogle Scholar
  16. Carnevali O, Tosti L, Speciale C et al (2010) DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PLoS One 5:1–7.  https://doi.org/10.1371/journal.pone.0010201 CrossRefGoogle Scholar
  17. Carnevali O, Notarstefano V, Olivotto I et al (2017) Dietary administration of EDC mixtures: a focus on fish lipid metabolism. Aquat Toxicol 185:95–104.  https://doi.org/10.1016/j.aquatox.2017.02.007 PubMedCrossRefGoogle Scholar
  18. Chen R, Liu C, Yuan L et al (2016) 2, 4-Dichloro-6-nitrophenol, a photonitration product of 2, 4-dichlorophenol, caused anti-androgenic potency in Chinese rare minnows (Gobiocypris rarus). Environ Pollut 216:591–598.  https://doi.org/10.1016/j.envpol.2016.06.016 PubMedCrossRefGoogle Scholar
  19. Chen L, Au DWT, Hu C et al (2017) Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias melastigma) exposed chronically to the chemopreventive and antifouling agent, 3,3″-diindolylmethane (DIM). Aquat Toxicol 183:135–143.  https://doi.org/10.1016/j.aquatox.2016.12.021 PubMedCrossRefGoogle Scholar
  20. Chyb J, Kime D E, Mikolajczyk T, et al (2000) The influence of zinc on sperm motility of common carp—a computer assisted studies. Arch Rybactwa Pol 8:5–14Google Scholar
  21. Chyb J, Kime DE, Szczerbik P, et al (2001a) Computer assisted analysis (CASA) of common carp Cyprinus carpio L. spermatozoa motility in the presence of cadmium. Arch Polish Fish 9:173–181Google Scholar
  22. Chyb J, Sokolowska-Mikolajczyk M, Kime DE, et al (2001b) Influence of mercury on computer analysed sperm motility of common carp, Cyprinus carpio L., in vitro. Arch Pol Fish 9, 51–60.Google Scholar
  23. Corradetti B, Stronati A, Tosti L et al (2013) Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio). Reprod Biol 13:195–202.  https://doi.org/10.1016/j.repbio.2013.07.003 PubMedCrossRefGoogle Scholar
  24. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  25. Dietrich GJ, Dietrich M, Kowalski RK et al (2010) Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success. Aquat Toxicol 97:277–284.  https://doi.org/10.1016/J.AQUATOX.2009.12.010 PubMedCrossRefGoogle Scholar
  26. Ellinger-Ziegelbauer H, Ahr H-J (2014) Omics in toxicology. In: Regulatory toxicology. Springer Berlin Heidelberg, Heidelberg, pp 173–179CrossRefGoogle Scholar
  27. Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16:R50–R59.  https://doi.org/10.1093/hmg/ddm018 PubMedCrossRefGoogle Scholar
  28. Fenske M, Segner H (2004) Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat Toxicol 67:105–126.  https://doi.org/10.1016/j.aquatox.2003.10.008 PubMedCrossRefGoogle Scholar
  29. Fenske M, Maack G, Schäfers C, Segner H (2005) An environmentally relevant concentration of estrogen induces arrest of male gonad development in zebrafish, Danio rerio. Environ Toxicol Chem 24:1088.  https://doi.org/10.1897/04-096R1.1 PubMedCrossRefGoogle Scholar
  30. Fitzgerald AC, Peyton C, Dong J, Thomas P (2015) Bisphenol A and related alkylphenols exert nongenomic estrogenic actions through a G protein-coupled estrogen receptor 1 (Gper)/epidermal growth factor receptor (Egfr) pathway to inhibit meiotic maturation of zebrafish oocytes. Biol Reprod 93:135.  https://doi.org/10.1095/biolreprod.115.132316 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Forner-Piquer I, Maradonna F, Gioacchini G et al (2017) Dose-specific effects of di-isononyl phthalate on the endocannabinoid system and on liver of female zebrafish. Endocrinology.  https://doi.org/10.1210/en.2017-00458
  32. Gao J, Zhang Y, Zhang T et al (2017) Responses of gonadal transcriptome and physiological analysis following exposure to 17α-ethynylestradiol in adult rare minnow Gobiocypris rarus. Ecotoxicol Environ Saf 141:209–215.  https://doi.org/10.1016/j.ecoenv.2017.03.028 PubMedCrossRefGoogle Scholar
  33. Giari L, Vincenzi F, Badini S et al (2016) Common carp Cyprinus carpio responses to sub-chronic exposure to perfluorooctanoic acid. Environ Sci Pollut Res Int 23:15321–15330.  https://doi.org/10.1007/s11356-016-6706-1 PubMedCrossRefGoogle Scholar
  34. Godfrey A, Hooser B, Abdelmoneim A, et al (2017) Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish.  https://doi.org/10.1016/j.aquatox.2017.10.024
  35. Golshan M, Hatef A, Socha M et al (2015) Di-(2-ethylhexyl)-phthalate disrupts pituitary and testicular hormonal functions to reduce sperm quality in mature goldfish. Aquat Toxicol 163:16–26.  https://doi.org/10.1016/j.aquatox.2015.03.017 PubMedCrossRefGoogle Scholar
  36. Gomes ADO, Tolussi CE, Ribeiro C d S et al (2015) The role of ovarian steroids in reproductive plasticity in Hoplias malabaricus (Teleostei: Characiformes: Erythrinidae) in tropical reservoirs with different degrees of pollution. Gen Comp Endocrinol 222:1–10.  https://doi.org/10.1016/j.ygcen.2014.10.008 PubMedCrossRefGoogle Scholar
  37. Goodbred SL, Patiño R, Torres L et al (2015) Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA? Gen Comp Endocrinol 219:125–135.  https://doi.org/10.1016/j.ygcen.2015.02.015 PubMedCrossRefGoogle Scholar
  38. Groh KJ, Nesatyy VJ, Segner H et al (2011) Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). Fish Physiol Biochem 37:619–647.  https://doi.org/10.1007/s10695-010-9464-x PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352–366.  https://doi.org/10.1016/j.ygcen.2009.03.002 PubMedCrossRefGoogle Scholar
  40. Hara Y, Strüssmann CA, Hashimoto S (2007) Assessment of short-term exposure to nonylphenol in Japanese medaka using sperm velocity and frequency of motile sperm. Arch Environ Contam Toxicol 53:406–410.  https://doi.org/10.1007/s00244-006-0172-6 PubMedCrossRefGoogle Scholar
  41. Hatef A, Alavi SMH, Linhartova Z et al (2010) In vitro effects of Bisphenol A on sperm motility characteristics in Perca fluviatilis L. (Percidae; Teleostei). J Appl Ichthyol 26:696–701.  https://doi.org/10.1111/j.1439-0426.2010.01543.x CrossRefGoogle Scholar
  42. Hatef A, Alavi SMH, Butts IAE et al (2011) Mechanism of action of mercury on sperm morphology, adenosine triphosphate content, and motility in Perca fluviatilis (Percidae; Teleostei). Environ Toxicol Chem 30:905–914.  https://doi.org/10.1002/etc.461 PubMedCrossRefGoogle Scholar
  43. Hatef A, Alavi SMH, Abdulfatah A et al (2012a) Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol Environ Saf 76:56–62.  https://doi.org/10.1016/j.ecoenv.2011.09.021 PubMedCrossRefGoogle Scholar
  44. Hatef A, Alavi SMH, Milla S et al (2012b) Anti-androgen vinclozolin impairs sperm quality and steroidogenesis in goldfish. Aquat Toxicol 122–123:181–187.  https://doi.org/10.1016/j.aquatox.2012.06.009 PubMedCrossRefGoogle Scholar
  45. Hatef A, Zare A, Alavi SMH et al (2012c) Modulations in androgen and estrogen mediating genes and testicular response in male goldfish exposed to bisphenol A. Environ Toxicol Chem 31:2069–2077.  https://doi.org/10.1002/etc.1919 PubMedCrossRefGoogle Scholar
  46. Hatef A, Mohammad S, Alavi H et al (2013) Toxicity of environmental contaminants to fish spermatozoa function in vitro—a review. Aquat Toxicol 140–141:134–144.  https://doi.org/10.1016/j.aquatox.2013.05.016 PubMedCrossRefGoogle Scholar
  47. Henley DV, Korach KS (2006) Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147:s25–s32.  https://doi.org/10.1210/en.2005-1117 PubMedCrossRefGoogle Scholar
  48. Illuminati S, Truzzi C, Annibaldi A et al (2010) Cadmium bioaccumulation and metallothionein induction in the liver of the Antarctic teleost Trematomus bernacchii during an on-site short-term exposure to the metal via seawater. Toxicol Environ Chem 92:617–640.  https://doi.org/10.1080/02772240902902349 CrossRefGoogle Scholar
  49. Illuminati S, Annibaldi A, Romagnoli T et al (2017) Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011–12. Chemosphere 185:1122–1135.  https://doi.org/10.1016/j.chemosphere.2017.07.087 PubMedCrossRefGoogle Scholar
  50. Jobling S, Nolan M, Tyler CR et al (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506.  https://doi.org/10.1021/es9710870 CrossRefGoogle Scholar
  51. Jobling S, Beresford N, Nolan M et al (2002) Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol Reprod 66:272–281.  https://doi.org/10.1095/biolreprod66.2.272 PubMedCrossRefGoogle Scholar
  52. Kime DE (1999) A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ 225:3–11PubMedCrossRefGoogle Scholar
  53. Kohn YY, Symonds JE, Kleffmann T et al (2015) Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). Fish Physiol Biochem 41:1403–1417.  https://doi.org/10.1007/s10695-015-0095-0 PubMedCrossRefGoogle Scholar
  54. Kollár T, Kása E, Ferincz Á et al (2018) Development of an in vitro toxicological test system based on zebrafish (Danio rerio) sperm analysis. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-1613-2
  55. Kumar S (2013) Dose-response models to understand toxicodynamics for pollutants in ecosystems. Int J Environ Sci Dev Monit 4:77–80Google Scholar
  56. Labbé C, Robles V, Herraez MP (2017) Epigenetics in fish gametes and early embryo. Aquaculture 472:93–106.  https://doi.org/10.1016/j.aquaculture.2016.07.026 CrossRefGoogle Scholar
  57. Lahnsteiner F, Mansour N, Berger B (2004) The effect of inorganic and organic pollutants on sperm motility of some freshwater teleosts. J Fish Biol 65:1–15.  https://doi.org/10.1111/j.0022-1112.2004.00528.x CrossRefGoogle Scholar
  58. Lahnsteiner F, Berger B, Kletzl M, Weismann T (2005) Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquat Toxicol 75:213–224.  https://doi.org/10.1016/j.aquatox.2005.08.004 PubMedCrossRefGoogle Scholar
  59. Laing LV, Viana J, Dempster EL et al (2016) Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio). Epigenetics 11:526–538.  https://doi.org/10.1080/15592294.2016.1182272 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Larsen MG, Bilberg K, Baatrup E (2009) Reversibility of estrogenic sex changes in zebrafish (Danio rerio). Environ Toxicol Chem 28:1783–1785.  https://doi.org/10.1897/08-563.1 PubMedCrossRefGoogle Scholar
  61. Li P, Guo W, Yue H et al (2017) Variability in the protein profiles in spermatozoa of two sturgeon species. PLoS One 12:e0186003.  https://doi.org/10.1371/journal.pone.0186003 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Linhart O, Alavi SMH, Rodina M et al (2008) Comparison of sperm velocity, motility and fertilizing ability between firstly and secondly activated spermatozoa of common carp (Cyprinus carpio). J Appl Ichthyol 24:386–392.  https://doi.org/10.1111/j.1439-0426.2008.01138.x CrossRefGoogle Scholar
  63. Liu S, Qin F, Wang H et al (2012) Effects of 17α-ethinylestradiol and bisphenol A on steroidogenic messenger ribonucleic acid levels in the rare minnow gonads. Aquat Toxicol 122–123:19–27.  https://doi.org/10.1016/j.aquatox.2012.05.010 PubMedCrossRefGoogle Scholar
  64. Liu Y, Chen S, Liu S et al (2014a) DNA methylation in the 5′ flanking region of cytochrome P450 17 in adult rare minnow Gobiocypris rarus—tissue difference and effects of 17α-ethinylestradiol and 17α-methyltestoterone exposures. Comp Biochem Physiol C Toxicol Pharmacol 162:16–22.  https://doi.org/10.1016/j.cbpc.2014.03.001 PubMedCrossRefGoogle Scholar
  65. Liu Y, Yuan C, Chen S et al (2014b) Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure. Aquat Toxicol 156:10–16.  https://doi.org/10.1016/j.aquatox.2014.07.017 PubMedCrossRefGoogle Scholar
  66. Luzio A, Monteiro SM, Rocha E et al (2016) Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole). Aquat Toxicol 175:90–105.  https://doi.org/10.1016/j.aquatox.2016.03.014 PubMedCrossRefGoogle Scholar
  67. Mandich A, Bottero S, Benfenati E et al (2007) In vivo exposure of carp to graded concentrations of bisphenol A. Gen Comp Endocrinol 153:15–24.  https://doi.org/10.1016/j.ygcen.2007.01.004 PubMedCrossRefGoogle Scholar
  68. Maradonna F, Polzonetti V, Bandiera SM et al (2004) Modulation of the hepatic CYP1A1 system in the marine fish Gobius niger, exposed to xenobiotic compounds. Environ Sci Technol 38:6277–6282PubMedCrossRefGoogle Scholar
  69. Maradonna F, Nozzi V, Dalla Valle L et al (2014) A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 166:1–13.  https://doi.org/10.1016/j.cbpc.2014.06.004 PubMedCrossRefGoogle Scholar
  70. Maradonna F, Nozzi V, Santangeli S et al (2015) Xenobiotic-contaminated diets affect hepatic lipid metabolism: implications for liver steatosis in Sparus aurata juveniles. Aquat Toxicol 167:257–264.  https://doi.org/10.1016/j.aquatox.2015.08.006 PubMedCrossRefGoogle Scholar
  71. Margiotta-Casaluci L, Hannah RE, Sumpter JP (2013) Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study. Aquat Toxicol 128–129:113–123.  https://doi.org/10.1016/j.aquatox.2012.12.003 PubMedCrossRefGoogle Scholar
  72. Martyniuk CJ, Denslow ND (2012) Exploring androgen-regulated pathways in teleost fish using transcriptomics and proteomics. Integr Comp Biol 52:695–704.  https://doi.org/10.1093/icb/ics072 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Martyniuk CJ, Prucha MS, Doperalski NJ et al (2013) Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). PLoS One 8:e59093.  https://doi.org/10.1371/journal.pone.0059093 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Miccoli A, Maradonna F, De Felice A et al (2017) Detection of endocrine disrupting chemicals and evidence of their effects on the HPG axis of the European anchovy Engraulis encrasicolus. Mar Environ Res 127:137–147.  https://doi.org/10.1016/j.marenvres.2017.04.006 PubMedCrossRefGoogle Scholar
  75. Migliarini B, Campisi AM, Maradonna F et al (2005) Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger. Gen Comp Endocrinol 142:241–247.  https://doi.org/10.1016/j.ygcen.2004.12.012 PubMedCrossRefGoogle Scholar
  76. Ortiz-Zarragoitia M, Bizarro C, Rojo-Bartolomé I et al (2014) Mugilid fish are sentinels of exposure to endocrine disrupting compounds in coastal and estuarine environments. Mar Drugs 12:4756–4782.  https://doi.org/10.3390/md12094756 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Paul-Prasanth B, Shibata Y, Horiguchi R, Nagahama Y (2011) Exposure to diethylstilbestrol during embryonic and larval stages of medaka fish (Oryzias latipes) leads to sex reversal in genetic males and reduced gonad weight in genetic females. Endocrinology 152:707–717.  https://doi.org/10.1210/en.2010-0812 PubMedCrossRefGoogle Scholar
  78. Pierron F, Bureau Du Colombier S, Moffett A et al (2014) Abnormal ovarian DNA methylation programming during gonad maturation in wild contaminated fish. Environ Sci Technol 48:11688–11695.  https://doi.org/10.1021/es503712c PubMedCrossRefGoogle Scholar
  79. Popek W, Dietrich G, Glogowski J et al (2006) Influence of heavy metals and 4-nonylphenol on reproductive function in fish. Reprod Biol 6(Suppl 1):175–188PubMedGoogle Scholar
  80. Ribeiro E, Ladeira C, Viegas S (2017) EDCs mixtures: a stealthy hazard for human health? Toxics 5:5.  https://doi.org/10.3390/toxics5010005 PubMedCentralCrossRefGoogle Scholar
  81. Rime H, Nguyen T, Bobe J et al (2010) Prochloraz-induced oocyte maturation in rainbow trout (Oncorhynchus mykiss), a molecular and functional analysis. Toxicol Sci 118:61–70.  https://doi.org/10.1093/toxsci/kfq255 PubMedCrossRefGoogle Scholar
  82. Ruhí A, Acuña V, Huerta B et al (2016) Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Sci Total Environ 540:250–259.  https://doi.org/10.1016/j.scitotenv.2015.06.009 PubMedCrossRefGoogle Scholar
  83. Rurangwa E, Biegniewska A, Slominska E et al (2002) Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility. Comp Biochem Physiol C Toxicol Pharmacol 131:335–344PubMedCrossRefGoogle Scholar
  84. Santangeli S, Maradonna F, Gioacchini G et al (2016) BPA-induced deregulation of epigenetic patterns: effects on female zebrafish reproduction. Sci Rep 6:21982.  https://doi.org/10.1038/srep21982 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Santangeli S, Maradonna F, Olivotto I et al (2017a) Effects of BPA on female reproductive function: the involvement of epigenetic mechanism. Gen Comp Endocrinol 245:122–126.  https://doi.org/10.1016/j.ygcen.2016.08.010 PubMedCrossRefGoogle Scholar
  86. Santangeli S, Maradonna F, Zanardini M et al (2017b) Effects of diisononyl phthalate on Danio rerio reproduction. Environ Pollut 231:1062.  https://doi.org/10.1016/j.envpol.2017.08.060 CrossRefGoogle Scholar
  87. Santos EM, Paull GC, Van Look KJW et al (2007) Gonadal transcriptome responses and physiological consequences of exposure to oestrogen in breeding zebrafish (Danio rerio). Aquat Toxicol 83:134–142.  https://doi.org/10.1016/J.AQUATOX.2007.03.019 PubMedCrossRefGoogle Scholar
  88. Schäfers C, Teigeler M, Wenzel A et al (2007) Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio. J Toxicol Environ Health A 70:768–779.  https://doi.org/10.1080/15287390701236470 PubMedCrossRefGoogle Scholar
  89. Scholz S, Klüver N (2009) Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev 3:136–151PubMedCrossRefGoogle Scholar
  90. Schulz RW, de França LR, Lareyre JJ et al (2010) Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411.  https://doi.org/10.1016/j.ygcen.2009.02.013 PubMedCrossRefGoogle Scholar
  91. Shaliutina O, Shaliutina-Kolešová A, Lebeda I et al (2017) The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet ( Acipenser ruthenus ) spermatozoa. Toxicol Vitr 43:9–15.  https://doi.org/10.1016/j.tiv.2017.05.006 CrossRefGoogle Scholar
  92. Silva P, Rocha MJ, Cruzeiro C et al (2012) Testing the effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens as found in the Douro River (Portugal) on the maturation of fish gonads—a stereological study using the zebrafish (Danio rerio) as model. Aquat Toxicol 124–125:1–10.  https://doi.org/10.1016/j.aquatox.2012.07.002 PubMedCrossRefGoogle Scholar
  93. Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398:4–12PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 143–150Google Scholar
  95. Sridevi P, Chaitanya RK, Prathibha Y et al (2015) Early exposure of 17α-ethynylestradiol and diethylstilbestrol induces morphological changes and alters ovarian steroidogenic pathway enzyme gene expression in catfish, Clarias gariepinus. Environ Toxicol 30:439–451.  https://doi.org/10.1002/tox.21920 PubMedCrossRefGoogle Scholar
  96. Thomas P, Doughty K (2004) Disruption of rapid, nongenomic steroid actions by environmental chemicals: interference with progestin stimulation of sperm motility in Atlantic croaker. Environ Sci Technol 38:6328–6332.  https://doi.org/10.1021/es0403662 PubMedCrossRefGoogle Scholar
  97. Tingaud-Sequeira A, Chauvigné F, Lozano J et al (2009) New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 10:434.  https://doi.org/10.1186/1471-2164-10-434 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Traversi I, Gioacchini G, Scorolli A et al (2014) Alkylphenolic contaminants in the diet: Sparus aurata juveniles hepatic response. Gen Comp Endocrinol 205:185–196.  https://doi.org/10.1016/j.ygcen.2014.06.015 PubMedCrossRefGoogle Scholar
  99. Valencia A, Rojo-Bartolomé I, Bizarro C et al (2017) Alteration in molecular markers of oocyte development and intersex condition in mullets impacted by wastewater treatment plant effluents. Gen Comp Endocrinol 245:10–18.  https://doi.org/10.1016/j.ygcen.2016.06.017 PubMedCrossRefGoogle Scholar
  100. Van Look KJW, Kime DE (2003) Automated sperm morphology analysis in fishes: the effect of mercury on goldfish sperm. J Fish Biol 63:1020–1033.  https://doi.org/10.1046/j.1095-8649.2003.00226.x CrossRefGoogle Scholar
  101. van Ravenzwaay B, Galay Burgos M, Vrijhof H (2012) Use of ‘omics to elucidate mechanism of action and integration of ‘omics in a systems biology concept. Mutat Res Toxicol Environ Mutagen 746:95–96.  https://doi.org/10.1016/J.MRGENTOX.2012.04.004 CrossRefGoogle Scholar
  102. Wang H, Wu T, Qin F et al (2012) Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish Physiol Biochem 38:653–664.  https://doi.org/10.1007/s10695-011-9548-2 PubMedCrossRefGoogle Scholar
  103. Wang Q, Lam JCW, Han J et al (2015) Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Aquat Toxicol 160:163–171.  https://doi.org/10.1016/j.aquatox.2015.01.014 PubMedCrossRefGoogle Scholar
  104. Wang P, Du Z, Gao S et al (2016) Impairment of reproduction of adult zebrafish (Danio rerio) by binary mixtures of environmentally relevant concentrations of triclocarban and inorganic mercury. Ecotoxicol Environ Saf 134:124–132.  https://doi.org/10.1016/j.ecoenv.2016.08.026 CrossRefGoogle Scholar
  105. Xu G, Du F, Li Y et al (2016) Integrated application of transcriptomics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus. Sci Rep 6:31835.  https://doi.org/10.1038/srep31835 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yilmaz O, Prat F, Ibañez AJ et al (2015) Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: status and perspectives on multiplicity and functioning of vitellogenins. Gen Comp Endocrinol 221:16–22.  https://doi.org/10.1016/j.ygcen.2015.01.018 PubMedCrossRefGoogle Scholar
  107. Yilmaz O, Patinote A, Nguyen TV et al (2017) Scrambled eggs: proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio). PLoS One 12:e0188084.  https://doi.org/10.1371/journal.pone.0188084 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yin P, Li YW, Chen QL, Liu ZH (2017) Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. Aquat Toxicol 185:129–137.  https://doi.org/10.1016/j.aquatox.2017.02.013 PubMedCrossRefGoogle Scholar
  109. Yonkos LT, Friedel EA, Fisher DJ (2014) Intersex (testicular oocytes) in largemouth bass (Micropterus salmoides) on the Delmarva Peninsula, USA. Environ Toxicol Chem 33:1163–1169.  https://doi.org/10.1002/etc.2544 PubMedCrossRefGoogle Scholar
  110. Yuan C, Zhang Y, Liu Y et al (2016) Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus. Aquat Toxicol 178:99–105.  https://doi.org/10.1016/j.aquatox.2016.07.015 PubMedCrossRefGoogle Scholar
  111. Żarski D, Nguyen T, Le Cam A et al (2017) Transcriptomic profiling of egg quality in sea bass (Dicentrarchus labrax) sheds light on genes involved in ubiquitination and translation. Mar Biotechnol (NY) 19:102–115.  https://doi.org/10.1007/s10126-017-9732-1 CrossRefGoogle Scholar
  112. Zhang Y, Yuan C, Hu G et al (2013) Characterization of four nr5a genes and gene expression profiling for testicular steroidogenesis-related genes and their regulatory factors in response to bisphenol A in rare minnow Gobiocypris rarus. Gen Comp Endocrinol 194:31–44.  https://doi.org/10.1016/j.ygcen.2013.08.014 PubMedCrossRefGoogle Scholar
  113. Zhang Y, Gao J, Xu P et al (2014a) Low-dose bisphenol A disrupts gonad development and steroidogenic genes expression in adult female rare minnow Gobiocypris rarus. Chemosphere 112:435–442.  https://doi.org/10.1016/j.chemosphere.2014.04.089 PubMedCrossRefGoogle Scholar
  114. Zhang Y, Yuan C, Qin F et al (2014b) Molecular characterization of gdf9 and bmp15 genes in rare minnow Gobiocypris rarus and their expression upon bisphenol A exposure in adult females. Gene 546:214–221.  https://doi.org/10.1016/j.gene.2014.06.013 PubMedCrossRefGoogle Scholar
  115. Zhang Y, Zhang S, Lu H et al (2014c) Genes encoding aromatases in teleosts: evolution and expression regulation.  https://doi.org/10.1016/j.ygcen.2014.05.008
  116. Zhang T, Liu Y, Chen H et al (2017) The DNA methylation status alteration of two steroidogenic genes in gonads of rare minnow after bisphenol A exposure. Comp Biochem Physiol Part - C Toxicol Pharmacol 198:9–18.  https://doi.org/10.1016/j.cbpc.2017.05.001 CrossRefGoogle Scholar
  117. Zhu Y, Hua R, Zhou Y et al (2016) Chronic exposure to mono-(2-ethylhexyl)-phthalate causes endocrine disruption and reproductive dysfunction in zebrafish. Environ Toxicol Chem 35:2117–2124.  https://doi.org/10.1002/etc.3369 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  2. 2.INBB Consorzio Interuniversitario di Biostrutture e BiosistemiRomeItaly

Personalised recommendations