Advertisement

Fish Physiology and Biochemistry

, Volume 44, Issue 3, pp 841–852 | Cite as

Acute exposure to copper induces variable intensity of oxidative stress in goldfish tissues

  • Viktor V. Husak
  • Nadia M. Mosiichuk
  • Olga I. Kubrak
  • Tetiana M. Matviishyn
  • Janet M. Storey
  • Kenneth B. Storey
  • Volodymyr I. Lushchak
Article

Abstract

Copper is an essential element, but at high concentrations, it is toxic for living organisms. The present study investigated the responses of goldfish, Carassius auratus, to 96 h exposure to 30, 300, or 700 μg L−1 of copper II chloride (Cu2+). The content of protein carbonyls was higher in kidney (by 158%) after exposure to 700 mg L−1 copper, whereas in gills, liver, and brain, we observed lower content of protein carbonyls after exposure to copper compared with control values. Exposure to copper resulted in increased levels of lipid peroxides in gills (76%) and liver (95–110%) after exposure to 300 and 700 μg L−1 Cu2+. Low molecular mass thiols were depleted by 23–40% in liver and by 29–67% in kidney in response to copper treatment and can be used as biomarkers toxicity of copper. The activities of primary antioxidant enzymes, superoxide dismutase and catalase, were increased in liver as a result of Cu2+ exposure, whereas in kidney catalase activity was decreased. The activities of glutathione-related enzymes, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase were decreased as a result of copper exposure, but glutathione reductase activity increased by 25–40% in liver. Taken together, these data show that exposure of fish to Cu2+ ions results in the development of low/high intensity oxidative stress reflected in enhanced activities of antioxidant and associated enzymes in different goldfish tissues.

Keywords

Antioxidant enzymes Metals Oxidative stress markers Oxidative stress Acute toxicity 

Abbreviations

CP

carbonyl protein groups

GPx

glutathione peroxidase

G6PDH

glucose-6-phosphate dehydrogenase

GR

glutathione reductase

GST

glutathione-S-transferase

H-SH

high molecular mass thiols

LOOH

lipid peroxidation

L-SH

low molecular mass thiols

ROS

reactive oxygen species

SOD

superoxide dismutase

Notes

Acknowledgements

The authors are thankful to I.V. Maksymiv for the technical assistance during experiments.

Funding

The research received partial support from a discovery grant (#6793) from the Natural Sciences and Engineering Research Council of Canada to KBS.

References

  1. Beaumont MW, Butler PJ, Taylor EW (2003) Exposure of brown trout to a sublethal concentration of copper in soft acidic water: effects upon gas exchange and ammonia accumulation. J Exp Biol 206(1):153–162.  https://doi.org/10.1242/jeb.00060 CrossRefPubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  3. Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67(5):1069S–1073S.  https://doi.org/10.1093/ajcn/67.5.1069S CrossRefPubMedGoogle Scholar
  4. Brooks SPJ (1992) A simple computer program with statistical test for the analysis of enzyme kinetics. BioTechniques 13(6):906–911PubMedGoogle Scholar
  5. Buettner G (1993) The packing order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol and ascorbate. Arch Biochem Biophys 300(2):535–543.  https://doi.org/10.1006/abbi.1993.1074 CrossRefPubMedGoogle Scholar
  6. Burke J, Handy RD (2005) Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss. J Exp Biol 208(2):391–407.  https://doi.org/10.1242/jeb.01379 CrossRefPubMedGoogle Scholar
  7. Carreau ND, Pyle GG (2005) Effect of copper exposure during embryonic development on chemosensory function of juvenile fathead minnows (Pimephales promelas). Ecotoxicol Environ Safe 61(1):1–6.  https://doi.org/10.1016/j.ecoenv.2004.10.008 CrossRefGoogle Scholar
  8. Carvalho CS, Fernandes MN (2006) Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251(1):109–117.  https://doi.org/10.1016/j.aquaculture.2005.05.018 CrossRefGoogle Scholar
  9. Carvalho CS, Fernandes MN (2008) Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Physiol A 151(3):437–442.  https://doi.org/10.1016/j.cbpa.2007.04.016 CrossRefGoogle Scholar
  10. Craig PM, Wood CM, McClelland GB (2007) Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 293(5):R1882–R1892.  https://doi.org/10.1152/ajpregu.00383.2007 CrossRefPubMedGoogle Scholar
  11. Dautremepuits C, Paris-Palacios S, Betoulle S, Vernet G (2004) Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comp Biochem Physiol C 137(4):325–333.  https://doi.org/10.1016/j.cca.2004.03.005 CrossRefGoogle Scholar
  12. De Boeck G, Meeus W, De Coen W, Blust R (2004) Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and gibel carp (Carassius auratus gibelio). Aquat Toxicol 70(3):179–188.  https://doi.org/10.1016/j.aquatox.2004.07.001 CrossRefPubMedGoogle Scholar
  13. De Boeck G, Smolders R, Blust R (2010) Copper toxicity in gibel carp Carassius auratus gibelio: importance of sodium and glycogen. Comp Biochem Physiol C 152:332–337Google Scholar
  14. Dethloff GM, Bailey HC, Maier KJ (2001) Effects of dissolved copper on select hematological, biochemical, and immunological parameters of wild rainbow trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol 40(3):371–380.  https://doi.org/10.1007/s002440010185 CrossRefPubMedGoogle Scholar
  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77.  https://doi.org/10.1016/0003-9861(59)90090-6 CrossRefPubMedGoogle Scholar
  16. Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58.  https://doi.org/10.1289/ehp.877147 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103(1-2):112–120.  https://doi.org/10.1016/j.aquatox.2011.02.010 CrossRefPubMedGoogle Scholar
  18. Fırat O, Kargın F (2010) Response of Cyprinus carpio to copper exposure: alterations in reduced glutathione, catalase and proteins electrophoretic patterns. Fish Physiol Biochem 36(4):1021–1028.  https://doi.org/10.1007/s10695-010-9380-0 CrossRefPubMedGoogle Scholar
  19. Gioda CR, Lissner LA, Pretto A, Rocha JBT, Schetinger MRC, Neto JR, Morsch VM, Loro VL (2007) Exposure to sublethal concentrations of Zn (II) and Cu (II) changes biochemical parameters in Leporinus obtusidens. Chemosphere 69(1):170–175.  https://doi.org/10.1016/j.chemosphere.2007.04.008 CrossRefPubMedGoogle Scholar
  20. Grosell M (2012) Copper. In: Wood CM, Farrell AP, Brauner CA (eds) Homeostasis and toxicology of essential metals. Elsevier, San Diego, pp 53–133Google Scholar
  21. Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133:287–303Google Scholar
  22. Grosell M, McDonald MD, Walsh PJ, Wood CM (2004) Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+-ATPase activity in osmoregulatory tissues. Aquat Toxicol 68(3):263–275.  https://doi.org/10.1016/j.aquatox.2004.03.007 CrossRefPubMedGoogle Scholar
  23. Hansen BH, Rømma S, Garmo ØA, Pedersen SA, Olsvik PA, Andersen RA (2007) Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere 67(11):2241–2249.  https://doi.org/10.1016/j.chemosphere.2006.12.048 CrossRefPubMedGoogle Scholar
  24. Hermes-Lima M, Storey KB (1993) In vitro oxidative inactivation of glutathione S-transferase from a freeze tolerant reptile. Mol Cell Biochem 124(2):149–158.  https://doi.org/10.1007/BF00929207 CrossRefPubMedGoogle Scholar
  25. Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation. Free Radic Biol Med 19(3):271–280.  https://doi.org/10.1016/0891-5849(95)00020-X CrossRefPubMedGoogle Scholar
  26. Jiang WD, Feng L, Liu Y, Jiang J, Hu K, Li SH, Zhou XQ (2010) Lipid peroxidation, protein oxidant and antioxidant status of muscle, intestine and hepatopancreas for juvenile Jian carp, Cyprinus carpio var. Jian fed graded levels of myo-inositol. Food Chem 120(3):692–697.  https://doi.org/10.1016/j.foodchem.2009.10.062 CrossRefGoogle Scholar
  27. Kim WK, Park JW, Lim ES, Lee SK, Kim J, Kim S, Lee SW, Choi K, Jung J (2014) Tissue-specific antioxidant responses in pale chub (Zacco platypus) exposed to copper and benzo[a]pyrene. Bull Environ Contam Toxicol 92(5):540–545.  https://doi.org/10.1007/s00128-014-1213-x CrossRefPubMedGoogle Scholar
  28. Leite CE, Maboni LO, Cruz FF, Rosemberg DB, Zimmermann FF, Pereira TC, Bogo MR, Bonan CD, Campos MM, Morrone FB, Battastini AM (2013) Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae. Toxicol Appl Pharmacol 272(3):681–689.  https://doi.org/10.1016/j.taap.2013.08.001 CrossRefPubMedGoogle Scholar
  29. Lenz AG, Costabel U, Shaltiel S, Levine RL (1989) Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal Biochem 177:419–425.  https://doi.org/10.1016/0003-2697(89)90077-8
  30. Liu H, Wanga W, Zhang JF, Wang XR (2006) Effects of copper and its ethylenediamine tetraacetate complex on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicol Environ Safety 65(3):350–354.  https://doi.org/10.1016/j.ecoenv.2005.09.002 CrossRefPubMedGoogle Scholar
  31. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30.  https://doi.org/10.1016/j.aquatox.2010.10.006 CrossRefPubMedGoogle Scholar
  32. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids.  https://doi.org/10.1155/2012/736837
  33. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224C:164–175.  https://doi.org/10.1016/j.cbi.2014.10.016 CrossRefGoogle Scholar
  34. Lushchak VI (2016) Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiol Biochem 42(2):711–747.  https://doi.org/10.1007/s10695-015-0171-5 CrossRefPubMedGoogle Scholar
  35. Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues: 1. Indices of oxidative stress. Comp Biochem Physiol C 143(1):30–35.  https://doi.org/10.1016/j.cbpc.2005.11.017 CrossRefGoogle Scholar
  36. Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37(8):1670–1680.  https://doi.org/10.1016/j.biocel.2005.02.024 CrossRefPubMedGoogle Scholar
  37. Machado AA, Hoff ML, Klein RD, Cardozo JG, Giacomin MM, Pinho GL, Bianchini A (2013) Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water. Aquat Toxicol 138-139:60–69.  https://doi.org/10.1016/j.aquatox.2013.04.009 CrossRefPubMedGoogle Scholar
  38. Mansour SA, Sidky MM (2002) Ecotoxicological studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate (Egypt). Food Chem 78(1):15–22.  https://doi.org/10.1016/S0308-8146(01)00197-2 CrossRefGoogle Scholar
  39. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153(1-3):83–104.  https://doi.org/10.1016/S0300-483X(00)00306-1 CrossRefPubMedGoogle Scholar
  40. McDonald DG, Wood CM (1993) Branchial mechanisms of acclimation to metals in freshwater fish. In: Cliff Rankin J, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 297–321 (Chapter 12).  https://doi.org/10.1007/978-94-011-2304-4_12 CrossRefGoogle Scholar
  41. Mela M, Guiloski IC, Doria HB, Rabitto IS, da Silva CA, Maraschi AC, Prodocimo V, Freire CA, Randi MA, Ribeiro CA, de Assis HC (2013) Risks of waterborne copper exposure to a cultivated freshwater Neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf 88:108–116.  https://doi.org/10.1016/j.ecoenv.2012.11.002 CrossRefPubMedGoogle Scholar
  42. Meng F, Li M, Tao Z, Yuan L, Song M, Ren Q, Xin X, Meng Q, Wang R (2016) Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus. Aquaculture Reports 3:131–135.  https://doi.org/10.1016/j.aqrep.2016.02.001 CrossRefGoogle Scholar
  43. Morillo J, Úsero J, Gracia I (2005) Biomonitoring of trace metals in a mine-polluted estuarine system (Spain). Chemosphere 58(10):1421–1430.  https://doi.org/10.1016/j.chemosphere.2004.09.093 CrossRefPubMedGoogle Scholar
  44. Neal C, Robson AJ (2000) A summary of river water quality data collected within the land ocean interaction study: core data for eastern UK rivers draining to the North sea. Sci Total Environ 251/252:585–665.  https://doi.org/10.1016/S0048-9697(00)00397-1 CrossRefGoogle Scholar
  45. Nilsson GE, Renshaw GMC (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207(18):3131–3139.  https://doi.org/10.1242/jeb.00979 CrossRefPubMedGoogle Scholar
  46. Nunes B, Capela RC, Sérgio T, Caldeira C, Gonçalves F, Correia AT (2014) Effects of chronic exposure to lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environ Sci Pollut Res Int 21(8):5689–5700.  https://doi.org/10.1007/s11356-013-2485-0 CrossRefPubMedGoogle Scholar
  47. Pandey S, Parvez S, Ansari RA, Ali M, Kaur M, Hayat F, Ahmad F (2008) Raisuddin S. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem Biol Interact 174(3):183–192.  https://doi.org/10.1016/j.cbi.2008.05.014 CrossRefPubMedGoogle Scholar
  48. Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2000) Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol 50(1-2):109–124.  https://doi.org/10.1016/S0166-445X(99)00090-9 CrossRefPubMedGoogle Scholar
  49. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130(5):1447S–1454S.  https://doi.org/10.1093/jn/130.5.1447S CrossRefPubMedGoogle Scholar
  50. Pretto A, Loro VL, Silva VM, Salbego J, de Menezes CC, Souza Cde F, Gioda CR, Baldisserotto B (2014) Exposure to sublethal concentrations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard. Bull Environ Contam Toxicol 92(4):399–403.  https://doi.org/10.1007/s00128-014-1215-8 CrossRefPubMedGoogle Scholar
  51. Pyle G, Rajotte JW, Couture P (2005) Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicol Environ Safety 61(3):287–312.  https://doi.org/10.1016/j.ecoenv.2004.09.003 CrossRefPubMedGoogle Scholar
  52. Rabestein DL, Guevremont R, Evans CA (1985) Glutathione and its metal complexes. In: Siegel H (ed) Metal ions in biological systems. Marcel Dekker, New York, pp 104–141Google Scholar
  53. Ransberry VE, Morash AJ, Blewett TA, Wood CM, McClelland GB (2015) Oxidative stress and metabolic responses to copper in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus. Aquat Toxicol 161:242–252.  https://doi.org/10.1016/j.aquatox.2015.02.013 CrossRefPubMedGoogle Scholar
  54. Roméo M, Bennani N, Gnassia-Barelli M, Lafaurie M, Girard JP (2000) Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat Toxicol 48(2-3):185–194.  https://doi.org/10.1016/S0166-445X(99)00039-9 CrossRefPubMedGoogle Scholar
  55. Sampaio FG, Boijink CL, dos Santos LR, Oba ET, Kalinin AL, Luiz AJ, Rantin FT (2012) Antioxidant defenses and biochemical changes in the neotropical fish pacu, Piaractus mesopotamicus: responses to single and combined copper and hypercarbia exposure. Comp Biochem Physiol C Toxicol Pharmacol 156(3–4):178–186.  https://doi.org/10.1016/j.cbpc.2012.07.002 CrossRefPubMedGoogle Scholar
  56. Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, Aït-Aïssa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19(1):177–183.  https://doi.org/10.1016/j.etap.2004.07.003 CrossRefPubMedGoogle Scholar
  57. Seth V, Banerjee BD, Chakraborty AK (2001) Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pestic Biochem Phys 71(3):133–139.  https://doi.org/10.1006/pest.2001.2571 CrossRefGoogle Scholar
  58. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4C:180–183.  https://doi.org/10.1016/j.redox.2015.01.002 CrossRefGoogle Scholar
  59. Stephensen E, Sturve J, Forlin L (2002) Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp Biochem Physiol Part C 133(3):435–442.  https://doi.org/10.1016/S1532-0456(02)00129-1 CrossRefGoogle Scholar
  60. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336.  https://doi.org/10.1016/0891-5849(94)00159-H CrossRefPubMedGoogle Scholar
  61. Tang QQ, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Kuang SY, Tang L, Zhou XQ (2013) Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol Trace Elem Res 155(3):370–380.  https://doi.org/10.1007/s12011-013-9785-6 CrossRefPubMedGoogle Scholar
  62. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028.  https://doi.org/10.1152/ajplung.2000.279.6.L1005 CrossRefPubMedGoogle Scholar
  63. Turnlund JR (1999) Copper. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. Williams and Wilkins, Baltimore, p 241Google Scholar
  64. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149.  https://doi.org/10.1016/S1382-6689(02)00126-6 CrossRefPubMedGoogle Scholar
  65. Vieira LR, Gravato C, Soares AM, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere 76(10):1416–1427.  https://doi.org/10.1016/j.chemosphere.2009.06.005 CrossRefPubMedGoogle Scholar
  66. Wang W, Mai K, Zhang W, Ai Q, Yao C, Li H, Liu FZ (2009) Effects of dietary copper on survival, growth and immune response of juvenile abalone, Haliotis discus hannai. Aquaculture 297(1-4):122–127.  https://doi.org/10.1016/j.aquaculture.2009.09.006 CrossRefGoogle Scholar
  67. Wei K, Yang J (2015) Oxidative damage induced by copper and beta-cypermethrin in gill of the freshwater crayfish Procambarus clarkia. Ecotoxicol Environ Saf 113:446–453.  https://doi.org/10.1016/j.ecoenv.2014.12.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Viktor V. Husak
    • 1
  • Nadia M. Mosiichuk
    • 1
  • Olga I. Kubrak
    • 1
  • Tetiana M. Matviishyn
    • 1
  • Janet M. Storey
    • 2
  • Kenneth B. Storey
    • 2
  • Volodymyr I. Lushchak
    • 1
  1. 1.Department of Biochemistry and BiotechnologyVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  2. 2.Institute of BiochemistryCarleton UniversityOttawaCanada

Personalised recommendations