Advertisement

Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 543–555 | Cite as

Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss)

  • Pinanong Na-Phatthalung
  • Mariana Teles
  • Supayang Piyawan Voravuthikunchai
  • Lluís Tort
  • Camino Fierro-Castro
Article

Abstract

Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 μg mL−1 of R. tomentosa and 1 μg mL−1 of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1β, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture.

Keywords

Immunomodulatory effects Macrophages Rhodomyrtus tomentosa Rhodomyrtone Rainbow trout 

Notes

Acknowledgements

This work was funded by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission for Ph.D. scholarship, TRF Senior Research Scholar (Grant No. RTA5880005), the Faculty of Science Research Fund in fiscal year 2015, Faculty of Science, Prince of Songkla University, and AGL2013-48835-C2 of MINECO (Spain). L Tort, M Teles, and C Fierro-Castro are members of the Xarxa d’Aquicultura de Catalunya. M Teles has a post-doctoral fellowship from FCT (SFRH/BPD/109219/2015) supported by the European Social Fund and national funds from the “Ministério da Educação e Ciência (POPH – QREN – Tipologia 4.1)” of Portugal. JC Balasch is thankfully acknowledged for the graphic design of the figures.

References

  1. Chakraborty SB, Hancz C (2011) Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev Aquac 3(3):103–119.  https://doi.org/10.1111/j.1753-5131.2011.01048.x CrossRefGoogle Scholar
  2. Chakraborty M, Karmakar I, Haldar S, Das A, Bala A, Haldar PK (2016) Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: ex vivo and in vivo studies. J Pharm Bioallied Sci 8:210–216CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chandrasekar B, Colston J, Freeman G (1997) Induction of proinflammatory cytokine and antioxidant enzyme gene expression following brief myocardial ischaemia. Clin Exp Immunol 108(2):346–351.  https://doi.org/10.1046/j.1365-2249.1997.d01-1017.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chi C, Giri SS, Jun JW, Kim HJ, Yun S, Kim SG, Park SC (2016) Immunomodulatory effects of a bioactive compound isolated from Dryopteris crassirhizoma on the grass carp Ctenopharyngodon idella. J Immunol Res 2016:3068913CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, Jeong WI, Ryu SY, Do SH, Lee CS (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem 243(1/2):153–160.  https://doi.org/10.1023/A:1021624520740 CrossRefPubMedGoogle Scholar
  6. Chung S, Secombes CJ (1988) Analysis of events occurring within teleost macrophages during the respiratory burst. Comp Biochem Physiol B: Biochem Mol Biol 89(3):539–544.  https://doi.org/10.1016/0305-0491(88)90171-X CrossRefGoogle Scholar
  7. Dügenci SK, Arda N, Candan A (2003) Some medicinal plants as immunostimulant for fish. J Ethnopharmacol 88(1):99–106.  https://doi.org/10.1016/S0378-8741(03)00182-X CrossRefPubMedGoogle Scholar
  8. El-Sayed YS, Lebda MA, Hassinin M, Neoman SA (2015) Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity. PLoS One 10(3):e0121549.  https://doi.org/10.1371/journal.pone.0121549 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fent K (2001) Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol in Vitro 15(4-5):477–488.  https://doi.org/10.1016/S0887-2333(01)00053-4 CrossRefPubMedGoogle Scholar
  10. Fierro-Castro C, Barrioluengo L, López-Fierro P, Razquin B, Carracedo B, Villena A (2012) Fish cell cultures as in vitro models of pro-inflammatory responses elicited by immunostimulants. Fish Shellfish Immunol 33(2):389–400.  https://doi.org/10.1016/j.fsi.2012.05.019 CrossRefPubMedGoogle Scholar
  11. Fierro-Castro C, Barrioluengo L, López-Fierro P, Razquin B, Villena A (2013) Fish cell cultures as in vitro models of inflammatory responses elicited by immunostimulants. Expression of regulatory genes of the innate immune response. Fish Shellfish Immunol 35(3):979–987.  https://doi.org/10.1016/j.fsi.2013.07.015 CrossRefPubMedGoogle Scholar
  12. Galina J, Yin G, Ardo L, Jeney Z (2009) The use of immunostimulating herbs in fish. An overview of research. Fish Physiol Biochem 35(4):669–676.  https://doi.org/10.1007/s10695-009-9304-z CrossRefPubMedGoogle Scholar
  13. Grayfer L, Hodgkinson JW, Hitchen SJ, Belosevic M (2011) Characterization and functional analysis of goldfish (Carassius auratus L.) interleukin-10. Mol Immunol 48(4):563–571.  https://doi.org/10.1016/j.molimm.2010.10.013 CrossRefPubMedGoogle Scholar
  14. Harikrishnan R, Balasundaram C, Heo MS (2011) Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 317(1-4):1–15.  https://doi.org/10.1016/j.aquaculture.2011.03.039 CrossRefGoogle Scholar
  15. Hiranrat A, Mahabusarakam W (2008) New acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. Tetrahedron 64(49):11193–11197.  https://doi.org/10.1016/j.tet.2008.09.054 CrossRefGoogle Scholar
  16. Jeong D, Yang WS, Yang Y, Nam G, Kim JH, Yoon DH, Noh HJ, Lee S, Kim TW, Sung GH (2013) In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. J Ethnopharmacol 146(1):205–213.  https://doi.org/10.1016/j.jep.2012.12.034 CrossRefPubMedGoogle Scholar
  17. Kang JS, Jeon YJ, Kim HM, Han SH, Yang KH (2002) Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther 302(1):138–144.  https://doi.org/10.1124/jpet.302.1.138 CrossRefPubMedGoogle Scholar
  18. Lavanya G, Voravuthikunchai SP, Towatana NH (2012) Acetone extract from Rhodomyrtus tomentosa: a potent natural antioxidant. Evid Based Complement Alternat Med 2012:535479CrossRefPubMedPubMedCentralGoogle Scholar
  19. Limsuwan S, Trip EN, Kouwen TR, Piersma S, Hiranrat A, Mahabusarakam W, Voravuthikunchai SP, Van Dijl JM, Kayser O (2009) Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 16(6-7):645–651.  https://doi.org/10.1016/j.phymed.2009.01.010 CrossRefPubMedGoogle Scholar
  20. Liu Y, Song M, Che T, Bravo D, Pettigrew J (2012) Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro. J Anim Sci 90(8):2774–2783.  https://doi.org/10.2527/jas.2011-4304 CrossRefPubMedGoogle Scholar
  21. Manu K, Kuttan G (2008) Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-κB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol 8(7):974–981.  https://doi.org/10.1016/j.intimp.2008.02.013 CrossRefPubMedGoogle Scholar
  22. Mohamed OI, El-Nahas AF, El-Sayed YS, Ashry KM (2016) Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver. Pharm Biol 54(7):1164–1172.  https://doi.org/10.3109/13880209.2015.1057651 PubMedGoogle Scholar
  23. Mordmuang A, Voravuthikunchai SP (2015) Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract: an alternative approach for the treatment of staphylococcal bovine mastitis. Res Vet Sci 102:242–246.  https://doi.org/10.1016/j.rvsc.2015.07.018 CrossRefPubMedGoogle Scholar
  24. Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kB system. Clin Vaccine Immunol 13(3):319–328.  https://doi.org/10.1128/CVI.13.3.319-328.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Neumann NF, Stafford JL, Barreda D, Ainsworth AJ, Belosevic M (2001) Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev Comp Immunol 25(8-9):807–825.  https://doi.org/10.1016/S0145-305X(01)00037-4 CrossRefPubMedGoogle Scholar
  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9, 445):e45.  https://doi.org/10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Picchietti S, Bernini C, Belardinelli M, Ovidi E, Taddei A, Guerra L, Abelli L, Fausto A (2013) Immune modulatory effects of Aloe arborescens extract on the piscine SAF-1 cell line. Fish Shellfish Immunol 34(5):1335–1344.  https://doi.org/10.1016/j.fsi.2013.02.019 CrossRefPubMedGoogle Scholar
  28. Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MÁ (2013) Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 35(3):883–889.  https://doi.org/10.1016/j.fsi.2013.06.026 CrossRefPubMedGoogle Scholar
  29. Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172(1-2):63–92.  https://doi.org/10.1016/S0044-8486(98)00436-0 CrossRefGoogle Scholar
  30. Secombes CJ (1990) Isolation of salmonid macrophages and analysis of their killing activity. Tech Fish Immunol 1:137–154Google Scholar
  31. Secombes C, Wang T, Hong S, Peddie S, Crampe M, Laing K, Cunningham C, Zou J (2001) Cytokines and innate immunity of fish. Dev Comp Immunol 25(8-9):713–723.  https://doi.org/10.1016/S0145-305X(01)00032-5 CrossRefPubMedGoogle Scholar
  32. Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY (2002) Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol 2(7):857–865.  https://doi.org/10.1016/S1567-5769(01)00211-9 CrossRefPubMedGoogle Scholar
  33. Srisuwan S, Tongtawe P, Srimanote P, Voravuthikunchai SP (2014) Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS One 9(10):e110321.  https://doi.org/10.1371/journal.pone.0110321 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tatsuta E, Sipe JD, Shirahama T, Skinner M, Cohen AS (1984) Colchicine inhibition of serum amyloid protein SAA and SAP synthesis in primary mouse liver cell cultures. Arthritis Rheum 27(3):349–352.  https://doi.org/10.1002/art.1780270317 CrossRefPubMedGoogle Scholar
  35. Tung NH, Ding Y, Choi EM, Van Kiem P, Van Minh C, Kim YH (2009) New anthracene glycosides from Rhodomyrtus tomentosa stimulate osteoblastic differentiation of MC3T3-E1 cells. Arch Pharm Res 32(4):515–520.  https://doi.org/10.1007/s12272-009-1406-8 CrossRefPubMedGoogle Scholar
  36. Van Hai N (2015) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture 446:88–96CrossRefGoogle Scholar
  37. Vaseeharan B, Thaya R (2014) Medicinal plant derivatives as immunostimulants: an alternative to chemotherapeutics and antibiotics in aquaculture. Aquac Int 22(3):1079–1091.  https://doi.org/10.1007/s10499-013-9729-3 CrossRefGoogle Scholar
  38. Verma N, Tripathi SK, Sahu D, Das HR, Das RH (2010) Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem 336(1-2):127–135.  https://doi.org/10.1007/s11010-009-0263-6 CrossRefPubMedGoogle Scholar
  39. Villasante A, Powell MS, Moutou K, Murdoch GK, Overturf K, Wacyk J, Hardy RW (2016) Effects of anthocyanidins on myogenic differentiation and antioxidant defense in primary myogenic cells isolated from rainbow trout (Oncorhynchus mykiss). Aquaculture 454:81–89.  https://doi.org/10.1016/j.aquaculture.2015.12.007 CrossRefGoogle Scholar
  40. Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H, Tchounwou PB (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409(22):4753–4762.  https://doi.org/10.1016/j.scitotenv.2011.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wangkahart E, Scott C, Secombes CJ, Wang T (2016) Re-examination of the rainbow trout (Oncorhynchus mykiss) immune response to flagellin: Yersinia ruckeri flagellin is a potent activator of acute phase proteins, anti-microbial peptides and pro-inflammatory cytokines in vitro. Dev Comp Immunol 57:75–87.  https://doi.org/10.1016/j.dci.2015.12.017 CrossRefPubMedGoogle Scholar
  42. Wei H, Yin L, Feng S, Wang X, Yang K, Zhang A, Zhou H (2015) Dual-parallel inhibition of IL-10 and TGF-b1 controls LPS-induced inflammatory response via NF-kB signaling in grass carp monocytes/macrophages. Fish Shellfish Immunol 44(2):445–452.  https://doi.org/10.1016/j.fsi.2015.03.023 CrossRefPubMedGoogle Scholar
  43. Yang X, Guo JL, Ye JY, Zhang YX, Wang W (2015) The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella. Fish Shellfish Immunol 42(1):132–137.  https://doi.org/10.1016/j.fsi.2014.10.037 CrossRefPubMedGoogle Scholar
  44. Yin G, Cao L, Xu P, Jeney G, Nakao M, Lu C (2011) Hepatoprotective and antioxidant effects of Glycyrrhiza glabra extract against carbon tetrachloride (CCl4)-induced hepatocyte damage in common carp (Cyprinus carpio). Fish Physiol Biochem 37(1):209–216.  https://doi.org/10.1007/s10695-010-9436-1 CrossRefPubMedGoogle Scholar
  45. Yu HY, Kim KS, Lee YC, Moon HI, Lee JH (2012) Oleifolioside A, a new active compound, attenuates LPS-stimulated iNOS and COX-2 expression through the downregulation of NF-kB and MAPK activities in RAW 264.7 macrophages. Evid Based Complement Alternat Med 2012:637512PubMedPubMedCentralGoogle Scholar
  46. Zhai Z, Solco A, Wu L, Wurtele ES, Kohut ML, Murphy PA, Cunnick JE (2009) Echinacea increases arginase activity and has anti-inflammatory properties in RAW 264.7 macrophage cells, indicative of alternative macrophage activation. J Ethnopharmacol 122(1):76–85.  https://doi.org/10.1016/j.jep.2008.11.028 CrossRefPubMedGoogle Scholar
  47. Zou J, Secombes CJ (2016) The function of fish cytokines. Biology 5(2):23.  https://doi.org/10.3390/biology5020023 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Pinanong Na-Phatthalung
    • 1
  • Mariana Teles
    • 2
  • Supayang Piyawan Voravuthikunchai
    • 1
  • Lluís Tort
    • 2
  • Camino Fierro-Castro
    • 2
  1. 1.Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of ExcellencePrince of Songkla UniversityHat YaiThailand
  2. 2.Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations