Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 515–525 | Cite as

Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes

  • Asmma Y. Ammar
  • Abeer F. El Nahas
  • Shawky Mahmoud
  • Mohamed E. Barakat
  • Asmaa M. Hassan


The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.


Oreochromis niloticus Antifreeze gene Immune-related genes Thermal stress 


Funding information

The authors acknowledge the Egyptian Science and Technology Development Fund (STDF: Project ID: STDF-5632) for partial financial support.

Supplementary material

10695_2017_450_MOESM1_ESM.docx (29 kb)
Suppl. Fig. 1 (DOCX 28 kb)


  1. Alcorn SW, Murray AL, Pascho RJ (2002) Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish Immunol 12(4):303–334. CrossRefPubMedGoogle Scholar
  2. Azaza MS (2004) Tolérance à la température et à la salinité et effet de la température sur le déterminisme du sexe chez < oreochromis niloticus> (L., 1785), (Pisces, Cichlidae) en élevage dans les eaux géothermales du sud tunisien (Doctoral dissertation). Bull Inst Natn Scien Tech Mer de Salammbô 34:145–155Google Scholar
  3. Bagis H, Akkoç T, Tasş A, Aktoprakligil D (2008) Cryogenic effect of antifreeze protein on transgenic mouse ovaries and the production of live offspring by orthotopic transplantation of cryopreserved mouse ovaries. Mol Reprod develop 75(4):608–613. CrossRefGoogle Scholar
  4. Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58(3):b237–b275CrossRefGoogle Scholar
  5. Boujard T, Gelineau A, Coves D, Corraze G, Dutto G, Gasset E et al (2004) Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231(1-4):529–545. CrossRefGoogle Scholar
  6. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559. CrossRefPubMedGoogle Scholar
  7. Brown M, Hablützel P, Friberg IM, Thomason AG, Stewart A, Pachebat JA, Jackson JA (2016) Seasonal immunoregulation in a naturally-occurring vertebrate. BMC Genomics 17(1):369. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cavaggioni A, Findlay JBC, Tirindelli R (1990) Ligand-binding characteristics of homologous rat and mouse urinary proteins and pyrazine-binding protein of calf. Comp Biochem Physiol B 96(3):513–520. CrossRefPubMedGoogle Scholar
  9. Charo-Karisa H, Rezk MA, Bovenhuis H, Komen H (2005) Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles. Aquaculture 249(1):115–123. CrossRefGoogle Scholar
  10. Cheng CHC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8(6):715–720. CrossRefPubMedGoogle Scholar
  11. Cheng CHC, Cziko PA, Evans CW (2006) Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci U S A 103(27):10491–10496. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chervinski J (1982) Environmental physiology of tilapias. In: Pullin RSV & Lowe-McConnell RH (eds) The biology and culture of tilapias ICLARM Conference Proceedings. International Center for Living Aquatic Resources Management, Manila, Philippines 7:119–128Google Scholar
  13. Cortés AD, Romero Zuñiga AP, Enriquez Sais R, Martínez Castañeda JS, Ortega SC (2015) Effect of temperature on the expression of IFN-1 (α), STAT-1 and Mx-1 genes in Oncorhynchus mykiss (Salmoniformes: Salmonidae) exposed with the virus of the infectious pancreatic necrosis (IPNV). Revista de Biología Trop 63(2):559–569.  10.15517/rbt.v63i2.15701 CrossRefGoogle Scholar
  14. Cnaani A, Gall GAE, Hulata G (2000) Cold tolerance of tilapia species and hybrids. Aquacul Int 8(4):289–298. CrossRefGoogle Scholar
  15. Crawshaw LI (1977) Physiological and behavioral reactions of fishes to temperature change. J Fisheries Board Can 34(5):730–734. CrossRefGoogle Scholar
  16. Davies PL, Hew CL (1990) Biochemistry of fish antifreeze proteins. FASEB J 4(8):2460–2468CrossRefPubMedGoogle Scholar
  17. Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7(6):828–834. CrossRefPubMedGoogle Scholar
  18. Dominguez M, Takemura A, Tsuchiya M, Nakamura S (2004) Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 241(1):491–500. CrossRefGoogle Scholar
  19. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73(7):1491–1530. CrossRefGoogle Scholar
  20. Deng G, Laursen RA (1998) Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1388(2):305–314. CrossRefPubMedGoogle Scholar
  21. FAO (2010) Food and Agriculture Organization of the United Nations. Analysis and information on world fish trade.
  22. Fletcher GL, Goddard SV, Davies PL, Gong Z, Ewart KV, Hew CL (1998) In Cold Ocean Physiology (Portner HO, and Playle R, eds) Cambridge University Press, Cambridge, pp. 239–265Google Scholar
  23. Fletcher GL, Haya K, King MJ, Reisman HM (1985) Annual antifreeze cycles in Newfoundland, New Brunswick and Long Island winter flounder, Pseudopleuronectes americanus. Mar Ecol Prog Ser 21:205–212. CrossRefGoogle Scholar
  24. Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63(1):359–390. CrossRefPubMedGoogle Scholar
  25. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(1):1–14. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gong Z, Fletcher GL, Hew CL (1992) Tissue distribution of fish antifreeze protein mRNAs. Can J Zool 70(4):810–814CrossRefGoogle Scholar
  27. Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57(3):292–296. CrossRefPubMedGoogle Scholar
  28. Harding MM, Anderberg PI, Haymet ADJ (2003) Antifreeze glycoproteins from polar fish. Eur J Biochem 270(7):1381–1392. CrossRefPubMedGoogle Scholar
  29. Hayes PH, Scott GK, Ng NF, Hew CL, Davies PL (1989) Cystine-rich type II antifreeze protein precursor is initiated from the third AUG codon of its mRNA. J Biol Chem 264(31):18761–18767PubMedGoogle Scholar
  30. He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, Qiao F, Li DL, Zhang ML, Du ZY (2015) Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Physiol Rep 3(8):e12485CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hew CL, Yang DS (1992) Protein interaction with ice. Eur J Biochem 203(1–2):33–42CrossRefPubMedGoogle Scholar
  32. Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263(24):12049–12055PubMedGoogle Scholar
  33. Hillestad M, Austreng E, Johnsen F, Asgard T (1998) Long-term effects of dietary fat level and feeding rate on growth, feed utilization and carcass quality of Atlantic salmon. Aquat Nutr 4(2):89–98. CrossRefGoogle Scholar
  34. Hobbs RS, Fletcher GL (2008) Tissue specific expression of antifreeze protein and growth hormone transgenes driven by the ocean pout (Macrozoarces americanus) antifreeze protein OP5a gene promoter in Atlantic salmon (Salmo salar). Transgenic Res 17(1):33–45. CrossRefPubMedGoogle Scholar
  35. Hong S, Secombes CJ (2009) Two peptides derived from trout IL-1β have different stimulatory effects on immune gene expression after intraperitoneal administration. Comp Biochem Physiol B Biochem Mol Biol 153(3):275–280CrossRefPubMedGoogle Scholar
  36. Hulata G, Wohlfarth GW, Halevy A (1986) Mass selection for growth rate in the Nile tilapia (Oreochromis niloticus). Aquaculture 57(1–4):177–184. CrossRefGoogle Scholar
  37. Kim HJ (2015) Antifreeze activity in temperate fish from the East Sea, Korea. Fish Aquat Sci 18:137–142Google Scholar
  38. Le Morvan CAR, Clerton P, Deschaux P, Troutaud D (1997) Effects of environmental temperature on macrophage activities in carp. Fish Shellfish Immunol 7(3):209–212. CrossRefGoogle Scholar
  39. Lee JK, Kim HJ (2016) Cloning, expression, and activity of type IV antifreeze protein from cultured subtropical olive flounder (Paralichthys olivaceus). Fish Aquat Sci 19(1):33. CrossRefGoogle Scholar
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. CrossRefPubMedGoogle Scholar
  41. Koyama M, Tanaka M, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H (2009) Interaction between the N- and C-terminal domains modulates the stability and lipid binding of apolipoprotein A–I. Biochemistry 48(11):2529–2537. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miao M, Chan SL, Fletcher GL, Hew CL (2002) Control of antifreeze protein gene expression in winter flounder. Fish Antifreeze Proteins 1:139CrossRefGoogle Scholar
  43. Nakharuthai C, Areechon, N, Srisapoome P (2011) Molecular characterization and expression analysis of a cDNA encoding CC chemokine gene in Nile tilapia (Oreochromis niloticus). In Proceedings of the 49th Kasetsart University Annual Conference, Kasetsart University, Thailand, Fisheries, 3:189-199. Kasetsart UniversityGoogle Scholar
  44. Nakharuthai C, Areechon N, Srisapoome P (2016) Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. Develop Comp Immunol 59:207–228. CrossRefGoogle Scholar
  45. Ndiwa TC, Nyingi DW, Agnese JF (2014) An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758) threatened by aquaculture activities in Loboi drainage, Kenya. PloS One 9(9):e106972CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nishimiya Y, Yasuhiro M, Hirano Y, Kondo H, Miura A, Tsuda S (2008) Mass preparation and technological development of an antifreeze protein. Synthesiology (Engl ed) 1(1):7–14. CrossRefGoogle Scholar
  47. Nagao K, Hata M, Tanaka K, Takechi Y, Nguyen D, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H (2014) The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles. Biochim Biophys Acta 1841(1):1–21CrossRefGoogle Scholar
  48. Oda MN, Forte TM, Ryan RO, Voss JC (2003) The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger. Nat Struct Biol 10(6):455–460. CrossRefPubMedGoogle Scholar
  49. Pang JC, Gao FY, Lu MX, Ye X, Zhu HP, Ke XL (2013) Major histocompatibility complex class IIA and IIB genes of Nile tilapia Oreochromis niloticus: genomic structure, molecular polymorphism and expression patterns. Fish Shellfish Immunol 34(2):486–496. CrossRefPubMedGoogle Scholar
  50. Pérez-Casanova JC, Rise ML, Dixon B, Afonso LOB, Hall JR, Johnson SC, Gamperl AK (2008) The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish Shellfish Immunol 24(5):600–609. CrossRefPubMedGoogle Scholar
  51. Phuyindee C, Unajak S, Srisapoome P (2011) Molecular characterization and expression analysis of a cDNA encoding immunoglobulin (Ig) M heavy chain secreted form of Nile tilapia (Oreochromis niloticus). In Proceedings of the 49th Kasetsart University Annual Conference, Kasetsart University, Thailand, Fisheries, 3:200-211. Kasetsart UniversityGoogle Scholar
  52. Qin W, Tyshenko MG, Doucet D, Walker VK (2006) Characterization of antifreeze protein gene expression in summer spruce budworm larvae. Insect Biochem Mol Biol 36(3):210–218. CrossRefPubMedGoogle Scholar
  53. Roberts LM, Ray MJ, Shih TW, Hayden E, Reader MM, Brouillette CG (1997) Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and –oxidized lipid-free and lipid-bound human apo A-I. Biochemistry 36(24):7615–7624. CrossRefPubMedGoogle Scholar
  54. Robertsen B (2006) The interferon system of teleost fish. Fish Shellfish Immunol 20(2):172–191. CrossRefPubMedGoogle Scholar
  55. Rombout JHWM, Huttenhuis HBT, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19(5):441–455. CrossRefPubMedGoogle Scholar
  56. Saha NR, Usami T, Suzuki Y (2002) Seasonal changes in the immune activities of common carp (Cyprinus carpio). Fish Physiol Biochem 26(4):379–387CrossRefGoogle Scholar
  57. Scott GK, Davies PL, Kao MH, Fletcher GL (1988) Differential amplification of antifreeze protein genes in the pleuronectinae. J Mol Evol 27(1):29–35. CrossRefPubMedGoogle Scholar
  58. Scott GK, Davies PL, Sheras MA, Fletcher GL (1987) Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem 168(3):629–633CrossRefPubMedGoogle Scholar
  59. Shirak A, Reicher S, Uliel S, Mehlman T, Shainskaya A, Ron M, Seroussi E (2012) Gender and sexual behavior modulate the composition of serum lipocalins in Nile tilapia (Oreochromis niloticus). Gene 504(1):22–30CrossRefPubMedGoogle Scholar
  60. Shuter BJ, Post JR (1990) Climate, population viability, and the zoogeography of temperate fishes. Trans Am Fish Soc 119(2):314–336.<0314:CPVATZ>2.3.CO;2 CrossRefGoogle Scholar
  61. Suzuki Y, Otaka T, Sato S, Hou YY, Aida K (1997) Reproduction related immunoglobulin changes in rainbow trout. Fish Physiol Biochem 17(1–6):415–421. CrossRefGoogle Scholar
  62. Tanck MWT, Booms GHR, Eding EH, Bonga SE, Komen J (2000) Cold shocks: a stressor for common carp. J Fish Biol 57(4):881–894. CrossRefGoogle Scholar
  63. Thorne MAS, Burns G, Fraser KPP, Hillyard G, Clark MS (2010) Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genomics 3(1):35–44. CrossRefPubMedGoogle Scholar
  64. Tocher D (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184. CrossRefGoogle Scholar
  65. Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35(12):1366–1375. CrossRefPubMedGoogle Scholar
  66. Trewavas E (1983) Tilapiine fishes of genera Sarotherodon Oreochromis, and Danakilia. British Museum Natural History, London 583PCrossRefGoogle Scholar
  67. Van Den Burg EH, Peeters RR, Verhoye M, Meek J, Flik G, Van der Linden A (2005) Brain responses to ambient temperature fluctuations in fish: reduction of blood volume and initiation of a whole-body stress response. J Neurophysiol 93(5):2849–2855. CrossRefPubMedGoogle Scholar
  68. White GE, Iqbal AJ, Greaves DR (2013) CC chemokine receptors and chronic inflammation—therapeutic opportunities and pharmacological challenges. Pharmacol Rev 65(1):47–89. CrossRefPubMedGoogle Scholar
  69. Wohlfarth GW, Hulata G, Rothbard S, Itzkowich J, Halevy A (1983) Comparisons between interspecific tilapia hybrids for some production traits. In: International symposium on tilapia in aquaculture. Tel Aviv University, Israel, 559–569Google Scholar
  70. Wu CL, Lin TH, Chang TL, Sun HW, Hui CF, Wu JL (2011) Zebrafish HSC70 promoter to express carp muscle-specific creatine kinase for acclimation under cold condition. Transgenic Res 20(6):1217–1226CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Asmma Y. Ammar
    • 1
  • Abeer F. El Nahas
    • 2
  • Shawky Mahmoud
    • 3
  • Mohamed E. Barakat
    • 4
  • Asmaa M. Hassan
    • 1
  1. 1.Biotechnology departmentAnimal Health Research InstituteKafr El SheikhEgypt
  2. 2.Animal Husbandry and Animal Wealth Department, Faculty of Veterinary MedicineAlexandria UniversityBeheraEgypt
  3. 3.Department of Physiology, Faculty of Veterinary MedicineKafer El Sheikh UniversityKafr El SheikhEgypt
  4. 4.Biotechnology DepartmentAnimal Health Research InstituteKafer El SheikEgypt

Personalised recommendations