Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 503–513 | Cite as

Cryopreservation of male and female gonial cells by vitrification in the critically endangered cyprinid honmoroko Gnathopogon caerulescens

  • Shogo Higaki
  • Takaaki Todo
  • Reiko Teshima
  • Ikuo Tooyama
  • Yasuhiro Fujioka
  • Noriyoshi Sakai
  • Tatsuyuki Takada


We investigated the feasibility of cryopreservation of spermatogonia and oogonia in the critically endangered cyprinid honmoroko Gnathopogon caerulescens using slow-cooling (freezing) and rapid-cooling (vitrification) methods. Initially, we examined the testicular cell toxicities and glass-forming properties of the five cryoprotectants: ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG), and 1,3-butylene glycol (BG), and we determined cryoprotectant concentrations that are suitable for freezing and vitrification solutions, respectively. Subsequently, we prepared the freezing solutions of EG, GC, DMSO, PG, and BG at 3, 2, 3, 2, and 2 M and vitrification solutions at 7, 6, 5, 5, and 4 M, respectively. Following the cryopreservation of the testicular cells mainly containing early-stage spermatogenic cells (e.g., spermatogonia and primary spermatocytes), cells were cultured for 7 days and immunochemically stained against germ cell marker protein Vasa. Areas occupied by Vasa-positive cells indicated that vitrification led to better survival of germ cells than the freezing method, and the best result was obtained with 5 M PG, about 50% recovery of germ cells following vitrification. In the case of ovarian cells containing oogonia and stage I, II, and IIIa oocytes, vitrification with 5 M DMSO resulted the best survival of oogonia, with equivalent cell numbers to those cultured without vitrification. The present data suggest that male and female gonial cells of the endangered species G. caerulescens can be efficiently cryopreserved using suitable cryoprotectants for spermatogonia and oogonia, respectively.


Cryopreservation Endangered cyprinid Oogonia Spermatogonia Vitrification 



The authors thank Syuichi Shimomura (Kusatsu Honmoroko Seisan Kumiai), Tetsuo Yamamoto (Yamasho Honmoroko Youshoku Koubou), and Taemon Yamamoto (Yamamoto Yougyojo) for providing honmoroko G. caerulescens and carp serum. We also thank Takefumi Yamamoto and Yasuhiro Mori (Shiga University of Medical Science) for their excellent technical supports.


This work was funded in part by the Grant-in-Aid for challenging Exploratory Research (23651248 and 15 K14440 to T.T.) and the Scientific Research on Priority Area (21028021 to T.T.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This study was also supported by the NIG Collaborative Research Program (2010-A41, 2011-A36, 2012-A28, 2013-A47, 2014-A45, and 2016-A36 to T.T.), Ritsumeikan Global Innovation Research Organization (R-GIRO) program (to T.T.), Center of Innovation Trial Program from Japan Science and Technology Agency, JST (to T.T.), and Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan (to S.H.).


  1. Berejnov V, Husseini NS, Alsaied OA, Thorne RE (2006) Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions. J Appl Crystallogr 39(2):244–251. CrossRefGoogle Scholar
  2. Cabrita E, Sarasquete C, Martínez-Páramo S, Robles V, Beirão J, Pérez-Cerezales S, Herráez M (2010) Cryopreservation of fish sperm: applications and perspectives. J Appl Ichthyol 26(5):623–635. CrossRefGoogle Scholar
  3. Chao NH, Liao IC (2001) Cryopreservation of finfish and shellfish gametes and embryos. Aquaculture 197(1-4):161–189. CrossRefGoogle Scholar
  4. Fabbrocini A, Lavadera SL, Rispoli S, Sansone G (2000) Cryopreservation of seabream (Sparus aurata) spermatozoa. Cryobiology 40(1):46–53. CrossRefPubMedGoogle Scholar
  5. Hartig SM (2013) Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol 102:14.15:14.15.1–14.1514.15.12. Google Scholar
  6. Higaki S, Eto Y, Kawakami Y, Yamaha E, Kagawa N, Kuwayama M, Nagano M, Katagiri S, Takahashi Y (2010a) Production of fertile zebrafish (Danio rerio) possessing germ cells (gametes) originated from primordial germ cells recovered from vitrified embryos. Reproduction 139(4):733–740. CrossRefPubMedGoogle Scholar
  7. Higaki S, Mochizuki K, Akashi Y, Yamaha E, Katagiri S, Takahashi Y (2010b) Cryopreservation of primordial germ cells by rapid cooling of whole zebrafish (Danio rerio) embryos. J Reprod Dev 56(2):212–218. CrossRefPubMedGoogle Scholar
  8. Higaki S, Shimada M, Kawamoto K, Todo T, Kawasaki T, Tooyama I, Fujioka Y, Sakai N, Takada T (2017) In vitro differentiation of fertile sperm from cryopreserved spermatogonia of the endangered endemic cyprinid honmoroko (Gnathopogon caerulescens). Sci Rep 7:42852. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Inoue D, Fujimoto T, Kawakami Y, Yasui G, Yamaha E, Arai K (2012) Vitrification of primordial germ cells using whole embryos for gene-banking in loach, Misgurnus anguillicaudatus. J Appl Ichthyol 28(6):919–924. CrossRefGoogle Scholar
  10. Japanese Ministry of the Environment (2012) Red list of Japanese brackish and freshwater fishes, fourth ed. Japanese Ministry of the Environment. Accessed 30 Jan 2017
  11. Kawakami Y, Ishihara M, Saito T, Fujimoto T, Adachi S, Arai K, Yamaha E (2012) Cryopreservation of green fluorescent protein (GFP)-labeled primordial germ cells with GFP fused to the 3′ untranslated region of the gene by vitrification of Japanese eel somite stage embryos. J Anim Sci 90(12):4256–4265. CrossRefPubMedGoogle Scholar
  12. Kawanabe H, Nishino M, Maehata M (2012) Lake Biwa: interactions between nature and people, 1st edn. Springer Science & Business Media, Heidelberg. CrossRefGoogle Scholar
  13. Lacerda SM, Batlouni SR, Costa GM, Segatelli TM, Quirino BR, Queiroz BM, Kalapothakis E, França LR (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One 5(5):e10740. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Leal MC, Cardoso ER, Nóbrega RH, Batlouni SR, Bogerd J, França LR, Schulz RW (2009) Histological and stereological evaluation of zebrafish (Danio rerio) spermatogenesis with an emphasis on spermatogonial generations. Biol Reprod 81(1):177–187. CrossRefPubMedGoogle Scholar
  15. Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci U S A 110(5):1640–1645. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocr 165(3):367–389. CrossRefPubMedGoogle Scholar
  17. Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Kása E, Urbányi B, Horváth Á (2017) First successful vitrification of salmonid ovarian tissue. Cryobiology 76:154–157. CrossRefPubMedGoogle Scholar
  18. Meryman HT (1958) X-ray analysis of rapidly frozen gelatin gels. Biodynamica 8:69–72Google Scholar
  19. Moon JH, Lee JR, Jee BC, Suh CS, Kim SH, Lim HJ, Kim HK (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23(8):1760–1770. CrossRefPubMedGoogle Scholar
  20. Muchlisin Z (2005) Review: current status of extenders and cryoprotectants on fish spermatozoa cryopreservation. Biodiversitas 6(1):12–15.  10.13057/biodiv/d060114 CrossRefGoogle Scholar
  21. Nakamura M (1969) Honmoroko Gnathopogon elongatus caerulescens (Sauvage). In: Nakamura M (ed) Cyprinid fishes of Japan. Studies on the life history of cyprinid fishes of Japan. Research Institute of Natural Resources Tokyo, Tokyo, pp 117–125Google Scholar
  22. Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G (2007) Production of trout offspring from triploid salmon parents. Science 317(5844):1517–1517. CrossRefPubMedGoogle Scholar
  23. Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103(8):2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Papadopulos F, Spinelli M, Valente S, Foroni L, Orrico C, Alviano F, Pasquinelli G (2007) Common tasks in microscopic and ultrastructural image analysis using ImageJ. Ultrastruct Pathol 31(6):401–407. CrossRefPubMedGoogle Scholar
  25. Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:reviews1017.1. CrossRefGoogle Scholar
  26. Robles V, Cabrita E, Paz Herraez M (2009) Germplasm cryobanking in zebrafish and other aquarium model species. Zebrafish 6(3):281–293. CrossRefPubMedGoogle Scholar
  27. Sakai N (2002) Transmeiotic differentiation of zebrafish germ cells into functional sperm in culture. Development 129(14):3359–3365. PubMedGoogle Scholar
  28. Sakai N (2006) In vitro male germ cell cultures of zebrafish. Methods 39(3):239–245. CrossRefPubMedGoogle Scholar
  29. Sansone G, Fabbrocini A, Ieropoli S, Langellotti AL, Occidente M, Matassino D (2002) Effects of extender composition, cooling rate, and freezing on the motility of sea bass (Dicentrarchus labrax, L.) spermatozoa after thawing. Cryobiology 44(3):229–239. CrossRefPubMedGoogle Scholar
  30. Scheffen B, Van Der Zwalmen P, Massip A (1986) A simple and efficient procedure for preservation of mouse embryos by vitrification. Cryo-Letters 7:260–269Google Scholar
  31. Selman K, Wallace RA, Sarka A, Qi X (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218(2):203–224. CrossRefGoogle Scholar
  32. Tiersch TR, Yang H, Jenkins JA, Dong Q (2007) Sperm cryopreservation in fish and shellfish. In: Roldan ERS, Gomendio M (eds) Spermatology (Society of Reproduction and Fertility supplement 65). Nottingham University Press, Nottingham, pp 493–508Google Scholar
  33. Tsai S, Spikings E, Hwang CC, Lin C (2010) Effects of the slow cooling during cryopreservation on the survival and morphology of Taiwan shoveljaw carp (Varicorhinus barbatulus) spermatozoa. Aquat Living Resour 23(1):119–124. CrossRefGoogle Scholar
  34. Vajta GB, Kuwayama M (2006) Improving cryopreservation systems. Theriogenology 65(1):236–244. CrossRefPubMedGoogle Scholar
  35. Westerfield M (2007) Recipes-embryo extract. In: Westerfield M (ed) The zebrafish book. The University of Oregon Press, Eugene, p 10.14Google Scholar
  36. Yin H, Cui L, Liu G, Cen L, Cao Y (2009) Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology 59(2):180–187. CrossRefPubMedGoogle Scholar
  37. Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137(8):1227–1230. CrossRefPubMedGoogle Scholar
  38. Zhang T, Rawson DM, Pekarsky I, Blais I, Lubzens E (2007) Low-temperature preservation of fish gonad cells and oocytes. In: Lubzens E, Cerdà J, Babin JP (eds) The fish oocyte. Springer, Heidelberg, pp 411–436. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Shogo Higaki
    • 1
  • Takaaki Todo
    • 1
  • Reiko Teshima
    • 1
  • Ikuo Tooyama
    • 2
  • Yasuhiro Fujioka
    • 3
  • Noriyoshi Sakai
    • 4
  • Tatsuyuki Takada
    • 1
  1. 1.Laboratory of Cell Engineering, Department of Pharmaceutical SciencesRitsumeikan UniversityKusatsuJapan
  2. 2.Molecular Neuroscience Research CenterShiga University of Medical ScienceOtsuJapan
  3. 3.Lake Biwa MuseumKusatsuJapan
  4. 4.Genetic Strains Research CenterNational Institute of GeneticsShizuokaJapan

Personalised recommendations