Advertisement

Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 465–474 | Cite as

Aloysia triphylla in the zebrafish food: effects on physiology, behavior, and growth performance

  • Daniane C. Zago
  • Alessandro C. Santos
  • Carlos F. C. Lanes
  • Daniela V. Almeida
  • Gessi Koakoski
  • Murilo S. de Abreu
  • Carla C. Zeppenfeld
  • Berta M. Heinzmann
  • Luis F. Marins
  • Bernardo Baldisserotto
  • Leonardo J. G. Barcellos
  • Mauro A. Cunha
Article

Abstract

Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.

Keywords

Cortisol Anxiety Oxygen consumption Zebrafish Welfare 

Notes

Acknowledgements

The authors thank Denis Rosemberg from the Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, for help on data analysis.

Funding information

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil). M. A. Cunha (310762/2014-6), B. Baldisserotto (301156/2012-3), L.J.G. Barcellos (301992/2014-2), L.F. Marins (305928/2015-5), and B.M. Heinzmann (306449/2015-3) are recipients of CNPq fellowship grants.

Compliance with ethical standards

The experimental protocol was approved by the Ethical and Animal Welfare Committee of the FURG under registration no. P002/2014.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 3th edn. Allured Publishing Corporation, Illinois, p 456Google Scholar
  2. Abreu MS, Koakoski G, Ferreira D, Oliveira TA, Rosa JGS, Gusso D, Giacomini ACV, Piato AL, Barcellos LJG (2014) Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One 9(7):e103232.  https://doi.org/10.1371/journal.pone.0103232 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT (2013) Why US adults use dietary supplements. JAMA Intern Med 11(173):355–361.  https://doi.org/10.1001/jamainternmed.2013.2299 CrossRefGoogle Scholar
  4. Bandeira Junior G, de Abreu MS, dos Santos da Rosa JG, Pinheiro CG, Heinzmann BM, Caron BO, Baldisserotto B, Gil Barcellos LJ (2018) Lippia alba and Aloysia triphylla essential oils are anxiolytic without inducing aversiveness in fish. Aquaculture 482:49–56.  https://doi.org/10.1016/j.aquaculture.2017.09.023 CrossRefGoogle Scholar
  5. Barcellos LJG, Ritter F, Kreutz LC, Quevedo RM, Silva LB, Bedin AC, Finco J, Cericato L (2007) Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture 272(1-4):774–778.  https://doi.org/10.1016/j.aquaculture.2007.09.002 CrossRefGoogle Scholar
  6. Barcellos LJG, Ritter F, Kreutz LC, Cericato L (2010) Can zebrafish Danio rerio learn about predation risk? The effect of a previous experience on the cortisol response in subsequent encounters with a predator. J Fish Biol 76(4):1032–1038.  https://doi.org/10.1111/j.1095-8649.2010.02542.x CrossRefGoogle Scholar
  7. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integ Comp Biol 42(3):517–525.  https://doi.org/10.1093/icb/42.3.517 CrossRefGoogle Scholar
  8. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 10:3–26.  https://doi.org/10.1016/0959-8030(91)90019-G CrossRefGoogle Scholar
  9. Belzung C, Prust L (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1-3):3–33.  https://doi.org/10.1016/S0014-2999(03)01272-X CrossRefPubMedGoogle Scholar
  10. Bruni G, Lakhani P, Kokel D (2014) Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 5:153.  https://doi.org/10.3389/fphar.2014.00153. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, Goodspeed J, Elegante M, Bartels B, Elkhayat S, Tien D, Tan J, Denmark A, Gilder T, Kyzar E, Dileo J, Frank K, Chang K, Utterback E, Hart P, Kalueff AV (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5(11):1786–1799.  https://doi.org/10.1038/nprot.2010.140. CrossRefPubMedGoogle Scholar
  12. Forgan LG, Forster ME (2010) Oxygen consumption, ventilation frequency and cytochrome c oxidase activity in blue cod (Parapercis colias) exposed to hydrogen sulphide or isoeugenol. Comp Biochem Physiol, Part C 151(1):57–65.  https://doi.org/10.1016/j.cbpc.2009.08.008 Google Scholar
  13. Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15(4):2609–2622.  https://doi.org/10.3390/molecules15042609. CrossRefPubMedGoogle Scholar
  14. Gressler LT, Riffel APK, Parodi TV, Saccol EMH, Koakoski G, Costa ST, Pavanato MA, Heinzmann BM, Caron B, Schmidt D, Llesuy SF, Barcellos LJG, Baldisserotto B (2014) Silver catfish Rhamdia quelen immersion anaesthesia with essential oil of Aloysia triphylla (L’He´ rit) Britton or tricaine methanesulfonate: effect on stress response and antioxidant status. Aquac Res 45(6):1061–1072.  https://doi.org/10.1111/are.12043 CrossRefGoogle Scholar
  15. Herrera M, Herves MA, Giráldez I, Skar K, Mogren H, Mortensen A, Puvanendran V (2017) Effects of amino acid supplementations on metabolic and physiological parameters in Atlantic cod (Gadus morhua) under stress. Fish Physiol Biochem 43(2):591–602.  https://doi.org/10.1007/s10695-016-0314-3 CrossRefPubMedGoogle Scholar
  16. Hontela A (1998) Interrenal dysfunction in fish from contaminated sites: in vivo and in-vitro assessment. Environ Toxicol Chem 17(1):44–48.  https://doi.org/10.1002/etc.5620170107 CrossRefGoogle Scholar
  17. Hu Q, Zhuo Z, Fang S, Zhang Y, Feng J (2017) Phytosterols improve immunity and exert anti-inflammatory activity in weaned piglets. J Sci Food Agric 97(12):4103–4109.  https://doi.org/10.1002/jsfa.8277 CrossRefPubMedGoogle Scholar
  18. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86.  https://doi.org/10.1089/zeb.2012.0861 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV (2017) Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish 14(3):197–208.  https://doi.org/10.1089/zeb.2016.1415. CrossRefPubMedGoogle Scholar
  20. Lan R, Li T, Kim I (2017) Effects of xylanase supplementation on growth performance, nutrient digestibility, blood parameters, fecalmicrobiota, fecal score and fecal noxious gas emission of weaning pigs fed corn-soybean meal-based diet. Anim Sci J 88(9):1398–1405.  https://doi.org/10.1111/asj.12771 CrossRefPubMedGoogle Scholar
  21. Liu H, Zhou D, Tong J, Vaddella V (2012) Influence of chestnut tannins on welfare, carcass characteristics, meat quality, and lipid oxidation in rabbits under high ambient temperature. Meat Sci 90(1):164–169.  https://doi.org/10.1016/j.meatsci.2011.06.019. CrossRefPubMedGoogle Scholar
  22. Mousaie A, Valizadeh R, Chamsaz M (2017) Selenium-methionine and chromium-methionine supplementation of sheep around parturition: impacts on dam and offspring performance. Arch Anim Nutr 71(2):134–149.  https://doi.org/10.1080/1745039X.2017.1283825. CrossRefPubMedGoogle Scholar
  23. Mylonas CC, Cardinalettia TG, Sigelaki I, Polzonetti-Magni A (2005) Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures. Aquaculture 246(1-4):467–481.  https://doi.org/10.1016/j.aquaculture.2005.02.046 CrossRefGoogle Scholar
  24. O’Driscoll K, O’Gorman DM, Taylor S, Boyle LA (2013) The influence of a magnesium-rich marine extract on behaviour, salivary cortisol levels and skin lesions in growing pigs. Animal 7(06):1017–1027.  https://doi.org/10.1017/S1751731112002431 CrossRefPubMedGoogle Scholar
  25. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3(2):235–247.  https://doi.org/10.1089/zeb.2006.3.235. CrossRefPubMedGoogle Scholar
  26. Parodi TV, Cunha MA, Becker AG, Zeppenfeld CC, Martins DI, Koakoski G, Barcellos LJG, Heinzmann BM, Baldisserotto B (2014) Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol Biochem 40(2):323–334.  https://doi.org/10.1007/s10695-013-9845-z. CrossRefPubMedGoogle Scholar
  27. Paulus D, Valmorbida R, Toffoli E, Nava GA, Paulus E (2013) Teor E composição química do óleo essencial e crescimento vegetativo de Aloysia triphylla em diferentes espaçamentos e épocas de colheita. Revista Ceres 60(3):372–379.  https://doi.org/10.1590/S0034-737X2013000300010 CrossRefGoogle Scholar
  28. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1-3):3–33.  https://doi.org/10.1016/S0014-2999(03)01272-X CrossRefPubMedGoogle Scholar
  29. Santos AC, Junio GB, Zago DC, Zeppenfeld CC, Silva DT, Heinzmann BM, Baldisserotto B, Cunha MA (2016) Anesthesia and anesthetic action mechanism of essential oils of Aloysia triphylla and Cymbopogon flexuosus in silver catfish (Rhamdia quelen). Vet Anaesth Analg 44(1):106–113.  https://doi.org/10.1111/vaa.12386 CrossRefGoogle Scholar
  30. Shalaby AM, Khattab YA, Abdel Rahman AM (2006) Effects of garlic (Allium sativum) and chloramphenicol on growth performance physiological parameters and survival of Nile Tilapia (Oreochromis niloticus). J Venom Anim Toxins incl Trop Dis 12(2):172–201.  https://doi.org/10.1590/S1678-91992006000200003 CrossRefGoogle Scholar
  31. Sivaram V, Babu MM, Immanuel G, Murugadass S, Citarasu T, Marian MP (2004) Growth and immune response of juvenile greasy groupers (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections. Aquaculture 237(1-4):9–20.  https://doi.org/10.1016/j.aquaculture.2004.03.014 CrossRefGoogle Scholar
  32. Talpur AD, Ikhwanuddin M (2012) Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture 364-365:6–12.  https://doi.org/10.1016/j.aquaculture.2012.07.035 CrossRefGoogle Scholar
  33. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962.  https://doi.org/10.1016/0091-3057(88)90413-3 CrossRefPubMedGoogle Scholar
  34. Tupe RS, Tupe SG, Agte VV (2011) Dietary nicotinic acid supplementation improves hepatic zinc uptake and offers hepatoprotection against oxidative damage. Br J Nutr 105(12):1741–1749.  https://doi.org/10.1017/S0007114510005520. CrossRefPubMedGoogle Scholar
  35. Vossen LE, Jutfelt F, Cocco A, Thörnqvist P-O, Winberg S (2016) Zebrafish (Danio rerio) behaviour is largely unaffected by elevated pCO2. Conserv Physiol 4(1).  https://doi.org/10.1093/conphys/cow065
  36. Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ (2016) Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. Fish Shellfish Immunol 58:177–192.  https://doi.org/10.1016/j.fsi.2016.09.029 CrossRefPubMedGoogle Scholar
  37. Weber P, Bendich A, Schalch W (1996) Vitamin C and human health—a review of recent data relevant to human requirements. Int J Vitam Nutr Res 66(1):19–30PubMedGoogle Scholar
  38. Zeppenfeld CC, Toni C, Becker AG, Miron DS, Parodi TV, Heinzmann BM, Barcellos LJG, Koakoski G, Rosa JGS, Loro VL, Cunha MA, Baldisserotto B (2014) Physiological and biochemical responses of silver catfish, Rhamdia quelen, after transport in water with essential oil of Aloysia triphylla (L’Herit) Britton. Aquaculture 418-419:101–107.  https://doi.org/10.1016/j.aquaculture.2013.10.013 CrossRefGoogle Scholar
  39. Zeppenfeld CC, Hernández DR, Santinón JJ, Heinzmann BM, Cunha MA, Schmidt D, Baldisserotto B (2015) Essential oil of Aloysia triphylla as feed additive promotes growth of silver catfish (Rhamdia quelen). Aquac Nutr 22(4):1–8.  https://doi.org/10.1111/anu.12311 Google Scholar
  40. Zeppenfeld CC, Saccol EMH, Pês TS, Salbego J, Koakoski G, dos Santos AC, Heinzmann BM, da Cunha MA, Barcellos LJG, Pavanato MA, Caron BO, Baldisserotto B (2017) Aloysia triphylla essential oil as food additive for Rhamdia quelen—stress and antioxidant parameters. Aquac Nutr 23(6):1–6.  https://doi.org/10.1111/anu.12511 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Daniane C. Zago
    • 1
  • Alessandro C. Santos
    • 1
  • Carlos F. C. Lanes
    • 2
  • Daniela V. Almeida
    • 3
  • Gessi Koakoski
    • 4
    • 5
  • Murilo S. de Abreu
    • 4
  • Carla C. Zeppenfeld
    • 1
  • Berta M. Heinzmann
    • 6
  • Luis F. Marins
    • 3
  • Bernardo Baldisserotto
    • 1
  • Leonardo J. G. Barcellos
    • 4
    • 5
    • 7
  • Mauro A. Cunha
    • 1
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Universidade Federal do Pampa, Campus UruguaianaUruguaianaBrazil
  3. 3.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  4. 4.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  5. 5.Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina VeterináriaUniversidade de Passo Fundo (UPF)Passo FundoBrazil
  6. 6.Departamento de Farmácia IndustrialUniversidade Federal de Santa Maria, UFSMSanta MariaBrazil
  7. 7.Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências BiológicasUniversidade de Passo Fundo (UPF)Passo FundoBrazil

Personalised recommendations