Abstract
Heterochronic lin-28 is a conserved RNA-binding protein that plays a key role in the timing of developmental events in organisms. As a crucial heterochronic gene, the protein controls developmental events of the second of four larval stages in Caenorhabditi elegans. Heterochronic let-7 miRNAs are often present in various species and highly conserved in sequence and biological function and are required for various biological processes. Previous studies showed that ten let-7 miRNAs were identified in the Japanese flounder (Paralichthys olivaceus) and that they were primarily expressed during metamorphosis. In this study, we clone and characterize the lin-28a gene from P. olivaceus and exhibit its dynamic expression pattern at different developmental stages and various adult tissues. The results show that the P. olivaceus lin-28a gene has high sequence similarity with other species and is highly expressed in the embryonic stage but weakly expressed in the larval stage. In addition, lin-28a overexpression causes cell proliferation and significantly promotes the levels of pre-let-7a and pre-let-7d while markedly depressing let-7a and let-7d expression in FEC (Flounder Embryonic Cell), which indicate that lin-28 possibly blocks the maturation of let-7 miRNAs. Additionally, lin-28a is identified as a target gene of let-7 miRNAs, and let-7 miRNAs directly regulate lin-28a expression by targeting its 3′ UTR. Taken together, lin-28a along with let-7 miRNA participates in a lin-28/let-7 axis pathway that regulates cell division and timing of embryonic and metamorphic events in P. olivaceus.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ambros V (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10(4):428–433. https://doi.org/10.1016/S0959-437X(00)00108-8
Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226(4673):409–416. https://doi.org/10.1126/science.6494891
Ambros V, Moss EG (1994) Heterochronic genes and the temporal control of C. elegans development. Trends Genet 10(4):123–127. https://doi.org/10.1016/0168-9525(94)90213-5
Balzer E, Moss EG (2007) Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol 4(1):16–25. https://doi.org/10.4161/rna.4.1.4364
Fu Y, Shi Z, Wang G, Zhang J, Li W, Jia L (2013) Expression of let-7 microRNAs that are involved in Japanese flounder (Paralichthys olivaceus) metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 165(2):106–113. https://doi.org/10.1016/j.cbpb.2013.03.012
Fukuhara O (1986) Morphological and functional development of Japanese flounder in early life stage. Bull Jpn Soc Sci Fish 52(1):81–91. https://doi.org/10.2331/suisan.52.81
Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004
Gorelick RJ, Henderson LE, Hanser JP, Rein A (1988) Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci U S A 85(22):8420–8424. https://doi.org/10.1073/pnas.85.22.8420
Hammell CM, Karp X, Ambros V (2009) A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106(44):18668–18673. https://doi.org/10.1073/pnas.0908131106
Huang YQ (2012) A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdisc Rev-RNA 3(4):483–494. https://doi.org/10.1002/wrna.1112
Inui Y, Miwa S (1985) Thyroid hormone inducesmetamorphosis of flounder larvae. Gen Comp Endocrinol 60(3):450–454. https://doi.org/10.1016/0016-6480(85)90080-2
Jiang S, Baltimore D (2016) RNA-binding protein Lin28 in cancer and immunity. Cancer Lett 375(1):108–113. https://doi.org/10.1016/j.canlet.2016.02.050
Lee SH, Cho S, Kim MS, Choi K, Cho JY, Gwak HS, Kim YJ, Yoo H, Lee SH, Park JB, Kim JH (2014) The ubiquitin ligase human TRIM71 regulates let-7 microRNA biogenesis via modulation of Lin28B protein. Biochim Biophys Acta 1839(5):374–386. https://doi.org/10.1016/j.bbagrm.2014.02.017
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Loughlin FE, Gebert LFR, Towbin H, Brunschweiger A, Hall J, Allain FHT (2012) Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol 19:84–U105
Mayr F, Heinemann U (2013) Mechanisms of Lin28-mediated miRNA and mRNA regulation—a structural and functional perspective. Int J Mol Sci 14(8):16532–16553. https://doi.org/10.3390/ijms140816532
Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17(11):R425–R434. https://doi.org/10.1016/j.cub.2007.03.043
Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258(2):432–442. https://doi.org/10.1016/S0012-1606(03)00126-X
Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C-elegans and is regulated by the lin-4 RNA. Cell 88(5):637–646. https://doi.org/10.1016/S0092-8674(00)81906-6
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147(5):1080–1091. https://doi.org/10.1016/j.cell.2011.10.020
Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549. https://doi.org/10.1261/rna.1155108
Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23(5):243–249. https://doi.org/10.1016/j.tig.2007.02.011
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. https://doi.org/10.1038/35040556
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079. https://doi.org/10.1016/j.cell.2011.10.039
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. https://doi.org/10.1038/35002607
Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. https://doi.org/10.1016/j.tcb.2008.07.007
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993. https://doi.org/10.1038/ncb1759
Schreiber AM, Specker JL (1998) Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status. Gen Comp Endocrinol 111:156–166
Song-Lin C, Guo-Cheng R, Zhen-Xia S, Cheng-Yin S (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 60:241–246
Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. https://doi.org/10.1038/nrm2347
Thornton JE, Gregory RI (2012) How does Lin28 let-7 control development and disease? Trends Cell Biol 22(9):474–482. https://doi.org/10.1016/j.tcb.2012.06.001
Tsialikas J, Romer-Seibert J (2015) LIN28: roles and regulation in development and beyond. Development 142(14):2397–2404. https://doi.org/10.1242/dev.117580
Viswanathan SR, Daley GQ (2010) Lin28: a microRNA regulator with a macro role. Cell 140(4):445–449. https://doi.org/10.1016/j.cell.2010.02.007
Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of MicroRNA processing by Lin28. Science 320(5872):97–100. https://doi.org/10.1126/science.1154040
Wang N, Yamanaka K, Inouye M (2000) Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1. Mol Microbiol 38(3):526–534. https://doi.org/10.1046/j.1365-2958.2000.02146.x
Wang X, Cao L, Wang Y, Wang X, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3(5):955–960. https://doi.org/10.3892/ol.2012.609
Yi X, Cai Y, Zhang N, Wang Q, Li W (2016) Sevoflurane inhibits embryonic stem cell self-renewal and subsequent neural differentiation by modulating the let-7a-Lin28 signaling pathway. Cell Tissue Res 365(2):1–12
Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL, Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42(7):626–U106. https://doi.org/10.1038/ng.593
Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ, Consortium D, Investigators M (2011) The Lin28/let-7 Axis regulates glucose metabolism. Cell 147(1):81–94. https://doi.org/10.1016/j.cell.2011.08.033
Acknowledgements
This work was supported by the Open Fund of Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences (No. KF2015No01), the National Natural Science Foundation of China (No. 41506159 and No. 41306128), the Natural Science Foundation of Shanghai (No. 15ZR1420600), the Innovation Programme of Shanghai Municipal Education Commission (No. 15ZZ083), and the Science and Technology Development Foundation of Shanghai Ocean University (No. A2-0203-00-100204). We also thank Liu Haijin and Hou Jilun for experimental fish, and we thank Chen Songlin for FEC.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fu, Y., Gao, L., Shi, Z. et al. Characterization and expression of lin-28a involved in lin28/let-7signal pathway during early development of P. olivaceus . Fish Physiol Biochem 44, 451–463 (2018). https://doi.org/10.1007/s10695-017-0445-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10695-017-0445-1


