Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 451–463 | Cite as

Characterization and expression of lin-28a involved in lin28/let-7signal pathway during early development of P. olivaceus

  • Yuanshuai Fu
  • Lina Gao
  • Zhiyi Shi
  • Feng You
  • Junling Zhang
  • Wenjuan Li


Heterochronic lin-28 is a conserved RNA-binding protein that plays a key role in the timing of developmental events in organisms. As a crucial heterochronic gene, the protein controls developmental events of the second of four larval stages in Caenorhabditi elegans. Heterochronic let-7 miRNAs are often present in various species and highly conserved in sequence and biological function and are required for various biological processes. Previous studies showed that ten let-7 miRNAs were identified in the Japanese flounder (Paralichthys olivaceus) and that they were primarily expressed during metamorphosis. In this study, we clone and characterize the lin-28a gene from P. olivaceus and exhibit its dynamic expression pattern at different developmental stages and various adult tissues. The results show that the P. olivaceus lin-28a gene has high sequence similarity with other species and is highly expressed in the embryonic stage but weakly expressed in the larval stage. In addition, lin-28a overexpression causes cell proliferation and significantly promotes the levels of pre-let-7a and pre-let-7d while markedly depressing let-7a and let-7d expression in FEC (Flounder Embryonic Cell), which indicate that lin-28 possibly blocks the maturation of let-7 miRNAs. Additionally, lin-28a is identified as a target gene of let-7 miRNAs, and let-7 miRNAs directly regulate lin-28a expression by targeting its 3′ UTR. Taken together, lin-28a along with let-7 miRNA participates in a lin-28/let-7 axis pathway that regulates cell division and timing of embryonic and metamorphic events in P. olivaceus.


P. olivaceus lin-28a let-7 miRNAs Embryonic development Metamorphosis 



This work was supported by the Open Fund of Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences (No. KF2015No01), the National Natural Science Foundation of China (No. 41506159 and No. 41306128), the Natural Science Foundation of Shanghai (No. 15ZR1420600), the Innovation Programme of Shanghai Municipal Education Commission (No. 15ZZ083), and the Science and Technology Development Foundation of Shanghai Ocean University (No. A2-0203-00-100204). We also thank Liu Haijin and Hou Jilun for experimental fish, and we thank Chen Songlin for FEC.


  1. Ambros V (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10(4):428–433. CrossRefPubMedGoogle Scholar
  2. Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226(4673):409–416. CrossRefPubMedGoogle Scholar
  3. Ambros V, Moss EG (1994) Heterochronic genes and the temporal control of C. elegans development. Trends Genet 10(4):123–127. CrossRefPubMedGoogle Scholar
  4. Balzer E, Moss EG (2007) Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol 4(1):16–25. CrossRefPubMedGoogle Scholar
  5. Fu Y, Shi Z, Wang G, Zhang J, Li W, Jia L (2013) Expression of let-7 microRNAs that are involved in Japanese flounder (Paralichthys olivaceus) metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 165(2):106–113. CrossRefPubMedGoogle Scholar
  6. Fukuhara O (1986) Morphological and functional development of Japanese flounder in early life stage. Bull Jpn Soc Sci Fish 52(1):81–91. CrossRefGoogle Scholar
  7. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gorelick RJ, Henderson LE, Hanser JP, Rein A (1988) Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci U S A 85(22):8420–8424. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hammell CM, Karp X, Ambros V (2009) A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106(44):18668–18673. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Huang YQ (2012) A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdisc Rev-RNA 3(4):483–494. CrossRefGoogle Scholar
  11. Inui Y, Miwa S (1985) Thyroid hormone inducesmetamorphosis of flounder larvae. Gen Comp Endocrinol 60(3):450–454. CrossRefPubMedGoogle Scholar
  12. Jiang S, Baltimore D (2016) RNA-binding protein Lin28 in cancer and immunity. Cancer Lett 375(1):108–113. CrossRefPubMedGoogle Scholar
  13. Lee SH, Cho S, Kim MS, Choi K, Cho JY, Gwak HS, Kim YJ, Yoo H, Lee SH, Park JB, Kim JH (2014) The ubiquitin ligase human TRIM71 regulates let-7 microRNA biogenesis via modulation of Lin28B protein. Biochim Biophys Acta 1839(5):374–386. CrossRefPubMedGoogle Scholar
  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. CrossRefPubMedGoogle Scholar
  15. Loughlin FE, Gebert LFR, Towbin H, Brunschweiger A, Hall J, Allain FHT (2012) Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol 19:84–U105CrossRefGoogle Scholar
  16. Mayr F, Heinemann U (2013) Mechanisms of Lin28-mediated miRNA and mRNA regulation—a structural and functional perspective. Int J Mol Sci 14(8):16532–16553. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17(11):R425–R434. CrossRefPubMedGoogle Scholar
  18. Moss EG, Tang L (2003) Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 258(2):432–442. CrossRefPubMedGoogle Scholar
  19. Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C-elegans and is regulated by the lin-4 RNA. Cell 88(5):637–646. CrossRefPubMedGoogle Scholar
  20. Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147(5):1080–1091. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23(5):243–249. CrossRefPubMedGoogle Scholar
  23. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. CrossRefPubMedGoogle Scholar
  24. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. CrossRefPubMedGoogle Scholar
  26. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. CrossRefPubMedGoogle Scholar
  27. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993. CrossRefPubMedGoogle Scholar
  28. Schreiber AM, Specker JL (1998) Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status. Gen Comp Endocrinol 111:156–166CrossRefPubMedGoogle Scholar
  29. Song-Lin C, Guo-Cheng R, Zhen-Xia S, Cheng-Yin S (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 60:241–246CrossRefGoogle Scholar
  30. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. CrossRefPubMedGoogle Scholar
  31. Thornton JE, Gregory RI (2012) How does Lin28 let-7 control development and disease? Trends Cell Biol 22(9):474–482. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tsialikas J, Romer-Seibert J (2015) LIN28: roles and regulation in development and beyond. Development 142(14):2397–2404. CrossRefPubMedGoogle Scholar
  33. Viswanathan SR, Daley GQ (2010) Lin28: a microRNA regulator with a macro role. Cell 140(4):445–449. CrossRefPubMedGoogle Scholar
  34. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of MicroRNA processing by Lin28. Science 320(5872):97–100. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang N, Yamanaka K, Inouye M (2000) Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1. Mol Microbiol 38(3):526–534. CrossRefPubMedGoogle Scholar
  36. Wang X, Cao L, Wang Y, Wang X, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3(5):955–960. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yi X, Cai Y, Zhang N, Wang Q, Li W (2016) Sevoflurane inhibits embryonic stem cell self-renewal and subsequent neural differentiation by modulating the let-7a-Lin28 signaling pathway. Cell Tissue Res 365(2):1–12CrossRefGoogle Scholar
  38. Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL, Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42(7):626–U106. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ, Consortium D, Investigators M (2011) The Lin28/let-7 Axis regulates glucose metabolism. Cell 147(1):81–94. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Yuanshuai Fu
    • 1
  • Lina Gao
    • 1
  • Zhiyi Shi
    • 1
  • Feng You
    • 2
  • Junling Zhang
    • 1
  • Wenjuan Li
    • 1
  1. 1.Key Laboratory of Genetic Resources for Freshwater Aquaculture and FisheriesShanghai Ocean University, Ministry of AgricultureShanghaiChina
  2. 2.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations